3D multimodal MRI brain glioma tumor and edema segmentation: A graph cut distribution matching approach

被引:47
|
作者
Njeh, Ines [1 ]
Sallemi, Lamia [1 ]
Ben Ayed, Ismail [4 ]
Chtourou, Khalil [1 ,5 ]
Lehericy, Stephane [2 ,3 ]
Galanaud, Damien [2 ,3 ]
Ben Hamid, Ahmed [1 ]
机构
[1] Sfax Univ, ENIS, Adv Technol Med & Signals, Sfax, Tunisia
[2] Hop La Pitie Salpetriere, CENIRICM, Neuroimaging Res Ctr, Paris, France
[3] Pitie Salpetriere, Dept Neuroradiol, Paris, France
[4] GE Healthcare, London, ON, Canada
[5] CHU Habib Bourguiba, Dept Nucl Med, Sfax, Tunisia
关键词
Graph cut distribution matching; Segmentation; MRI; Brain tumor; Edema; BraTS2012;
D O I
10.1016/j.compmedimag.2014.10.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5 s per image). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 50 条
  • [21] 3D MRI segmentation of brain structures
    Verard, L
    Fadili, J
    Ruan, S
    Bloyet, D
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1081 - 1082
  • [22] Brain Tumor Segmentation on Multimodal 3D-MRI using Deep Learning Method
    Wu, Peicheng
    Chang, Qing
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 635 - 639
  • [23] Brain MRI Tumor Segmentation with 3D Intracranial Structure Deformation Features
    Jui, Shang-Ling
    Zhang, Shichen
    Xiong, Weilun
    Yu, Fangxiaoqi
    Fu, Mingjian
    Wang, Dongmei
    Hassanien, Aboul Ella
    Xiao, Kai
    IEEE INTELLIGENT SYSTEMS, 2016, 31 (02) : 66 - 76
  • [24] Deep learning based 3D multimodal CNN for brain tumor segmentation and detection
    Aniket Tiwari
    Divyansh Kumar
    Hanuman Sidh
    Parul Sahare
    Tausif Diwan
    Vishal Satpute
    Iran Journal of Computer Science, 2024, 7 (4) : 843 - 859
  • [25] SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
    Jiang, Yun
    Zhang, Yuan
    Lin, Xin
    Dong, Jinkun
    Cheng, Tongtong
    Liang, Jing
    BRAIN SCIENCES, 2022, 12 (06)
  • [26] 3D automatic levels propagation approach to breast MRI tumor segmentation
    Bouchebbah, Fatah
    Slimani, Hachem
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [27] Automatic Multimodal Brain Image Classification using MLP and 3D Glioma Tumor Reconstruction
    Latif, Ghazanfar
    Butt, M. Mohsin
    Khan, Adil H.
    Butt, M. Omair
    Al-Asad, Jawad F.
    2017 9TH IEEE-GCC CONFERENCE AND EXHIBITION (GCCCE), 2018, : 958 - 963
  • [28] Multimodal MRI brain tumor segmentation using 3D attention UNet with dense encoder blocks and residual decoder blocks
    Tassew T.
    Ashamo B.A.
    Nie X.
    Multimedia Tools and Applications, 2025, 84 (7) : 3611 - 3633
  • [29] RETRACTED: 3D Automatic Segmentation of Brain Tumor Based on Deep Neural Network and Multimodal MRI Images (Retracted Article)
    Qian, Zhuliang
    Xie, Lifeng
    Xu, Yisheng
    EMERGENCY MEDICINE INTERNATIONAL, 2022, 2022
  • [30] An Innovative Approach to Multimodal Brain Tumor Segmentation: The Residual Convolution Gated Neural Network and 3D UNet Integration
    Gammoudi, Islem
    Ghozi, Raja
    Mahjoub, Mohamed Ali
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 141 - 151