3D multimodal MRI brain glioma tumor and edema segmentation: A graph cut distribution matching approach

被引:47
|
作者
Njeh, Ines [1 ]
Sallemi, Lamia [1 ]
Ben Ayed, Ismail [4 ]
Chtourou, Khalil [1 ,5 ]
Lehericy, Stephane [2 ,3 ]
Galanaud, Damien [2 ,3 ]
Ben Hamid, Ahmed [1 ]
机构
[1] Sfax Univ, ENIS, Adv Technol Med & Signals, Sfax, Tunisia
[2] Hop La Pitie Salpetriere, CENIRICM, Neuroimaging Res Ctr, Paris, France
[3] Pitie Salpetriere, Dept Neuroradiol, Paris, France
[4] GE Healthcare, London, ON, Canada
[5] CHU Habib Bourguiba, Dept Nucl Med, Sfax, Tunisia
关键词
Graph cut distribution matching; Segmentation; MRI; Brain tumor; Edema; BraTS2012;
D O I
10.1016/j.compmedimag.2014.10.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5 s per image). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 50 条
  • [1] Brain Tumor Synthetic Segmentation in 3D Multimodal MRI Scans
    Hamghalam, Mohammad
    Lei, Baiying
    Wang, Tianfu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 153 - 162
  • [2] A DISTRIBUTION-MATCHING APPROACH TO MRI BRAIN TUMOR SEGMENTATION
    Njeh, Ines
    Ben Ayed, Ismail
    Ben Hamida, Ahmed
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1707 - 1710
  • [3] Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation
    Dobko, Mariia
    Kolinko, Danylo-Ivan
    Viniavskyi, Ostap
    Yelisieiev, Yurii
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 232 - 241
  • [4] 3D Brain Tumor Segmentation Through Multimodal Weighted Network in MRI
    Zhou, Z.
    Wang, R.
    Yang, J.
    Guo, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [5] Multimodal weighted network for 3D brain tumor segmentation in MRI images
    Zhou, Zhiguo
    Wang, Rongfang
    Yang, Jing
    Xu, Rongbin
    Guo, Jinkun
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [6] Deep Learning Based Ensemble Approach for 3D MRI Brain Tumor Segmentation
    Tien-Bach-Thanh Do
    Dang-Linh Trinh
    Minh-Trieu Tran
    Lee, Guee-Sang
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 210 - 221
  • [7] Bag of Tricks for 3D MRI Brain Tumor Segmentation
    Zhao, Yuan-Xing
    Zhang, Yan-Ming
    Liu, Cheng-Lin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 210 - 220
  • [8] An Efficient Optimization Approach for Glioma Tumor Segmentation in Brain MRI
    Zeynab Barzegar
    Mansour Jamzad
    Journal of Digital Imaging, 2022, 35 : 1634 - 1647
  • [9] An Efficient Optimization Approach for Glioma Tumor Segmentation in Brain MRI
    Barzegar, Zeynab
    Jamzad, Mansour
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1634 - 1647
  • [10] Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks
    Rodriguez Colmeiro, R. G.
    Verrastro, C. A.
    Grosges, T.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 226 - 240