Two-parameter degenerate sliding bifurcations in Filippov systems

被引:59
|
作者
Kowalczyk, P [1 ]
di Bernardo, M [1 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
bifurcation; piecewise smooth; sliding; grazing;
D O I
10.1016/j.physd.2005.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the extension to the case of codimension-2 degenerate sliding bifurcations of the theory of sliding bifurcations in Filippov systems presented in [M. di Bernardo, P. Kowalczyk, A. Nordmark, Bifurcations of dynamical systems with sliding: derivation of normal form mappings, Physica D, 170 (2002) 175-205]. These bifurcations were detected in experimental systems such as the dry-friction oscillator and turn out to be organising centres for branches of codimension-1 sliding bifurcations. The analysis is carried out for generic n-dimensional piecewise smooth systems. The possible degenerate scenarios are classified. It is shown that several branches of codimension-1 sliding bifurcations originate from the degenerate codimension-2 points. Such branches are appropriately classified in the degenerate crossing-sliding case. A friction oscillator is used as a representative example to illustrate and confirm the theoretical derivations. The importance is discussed of the unfolding of the degenerate sliding bifurcations for the development of continuation techniques. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 229
页数:26
相关论文
共 50 条
  • [21] On two-parameter non-degenerate Brownian martingales
    Nualart, D
    Tindel, S
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (04): : 317 - 335
  • [22] On two-parameter non-smooth bifurcations in power converters
    Angulo, F
    di Bernardo, M
    Hogan, SJ
    Kowalczyk, P
    Olivar, G
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1485 - 1488
  • [23] Sliding Dynamics and Bifurcations in the Extended Nonsmooth Filippov Ecosystem
    Qin, Wenjie
    Tan, Xuewen
    Shi, Xiaotao
    Tosato, Marco
    Liu, Xinzhi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [24] Shilnikov chaos, Filippov sliding and boundary equilibrium bifurcations
    Glendinning, P. A.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (05) : 757 - 777
  • [25] Sliding Dynamics and Bifurcations in the Extended Nonsmooth Filippov Ecosystem
    Qin, Wenjie
    Tan, Xuewen
    Shi, Xiaotao
    Tosato, Marco
    Liu, Xinzhi
    International Journal of Bifurcation and Chaos, 2023, 31 (08):
  • [26] REGULARIZATION OF SLIDING GLOBAL BIFURCATIONS DERIVED FROM THE LOCAL FOLD SINGULARITY OF FILIPPOV SYSTEMS
    Bonet-Reves, Carles
    M-Seara, Tere
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3545 - 3601
  • [27] Two-parameter bifurcations in the Hodgkin-Huxley equations for muscle fibers
    Terada, Kazuko
    Tanaka, Hisa-Aki
    Yoshizawa, Shuji
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (06): : 86 - 94
  • [28] Two-parameter bifurcations in the Hodgkin-Huxley equations for muscle fibers
    Terada, K
    Tanaka, HA
    Yoshizawa, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (06): : 86 - 94
  • [29] Convergence, periodicity and bifurcations for the two-parameter absolute-difference equation
    Kent, CM
    Sedaghat, H
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (09) : 817 - 841
  • [30] Two-parameter bifurcations of an impact system under different damping conditions
    Lyu, Xiaohong
    Zhu, Xifeng
    Gao, Quanfu
    Luo, Guanwei
    CHAOS SOLITONS & FRACTALS, 2020, 138 (138)