Dirac oscillators and quasi-exactly solvable operators

被引:7
|
作者
Brihaye, Y [1 ]
Nininahazwe, A [1 ]
机构
[1] Univ Mons, Dept Math Phys, B-7000 Mons, Belgium
关键词
exact and quasi-exact solvability; Dirac equation;
D O I
10.1142/S0217732305018128
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Dirac equation is formulated in the background of three types of physically relevant potentials: scalar, vector and "Dirac-oscillator" potentials. Assuming these potentials to be spherically-symmetric and with generic polynomial forms in the radial variable, we construct the corresponding radial Dirac equation. Cases where this linear spectral equation is exactly solvable or quasi-exactly solvable are worked out in details. When available, relations between the radial Dirac operator and some super-algebra are pointed out.
引用
收藏
页码:1875 / 1885
页数:11
相关论文
共 50 条
  • [41] Superintegrability and quasi-exactly solvable eigenvalue problems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 925 - 929
  • [42] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [43] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367
  • [44] Additional constraints on quasi-exactly solvable systems
    S. M. Klishevich
    Theoretical and Mathematical Physics, 2007, 150 : 203 - 212
  • [45] New Quasi-Exactly Solvable Difference Equation
    Ryu Sasaki
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 373 - 384
  • [46] Superintegrability and quasi-exactly solvable eigenvalue problems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2008, 71 : 925 - 929
  • [47] Quasi-exactly solvable systems and orthogonal polynomials
    Bender, CM
    Dunne, GV
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) : 6 - 11
  • [48] Darboux transformations for quasi-exactly solvable Hamiltonians
    Debergh, N
    Van den Bossche, B
    Samsonov, BF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (11): : 1577 - 1587
  • [49] SPECTRAL SINGULARITIES AND QUASI-EXACTLY SOLVABLE QUANTAL PROBLEM
    TURBINER, AV
    USHVERIDZE, AG
    PHYSICS LETTERS A, 1987, 126 (03) : 181 - 183
  • [50] QUASI-EXACTLY SOLVABLE MULTIDIMENSIONAL SCHRODINGER-EQUATIONS
    USHVERIDZE, AG
    MODERN PHYSICS LETTERS A, 1991, 6 (11) : 977 - 979