A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact

被引:69
|
作者
Maziz, Ammar [1 ,2 ]
Tarfaoui, Mostapha [1 ]
Gemi, Lokman [3 ]
Rechak, Said [2 ]
Nachtane, Mourad [4 ]
机构
[1] CNRS, UMR 6027, IRDL, ENSTA Bretagne, F-29200 Brest, France
[2] ENP, Lab GMD, Algiers, Algeria
[3] Necmettin Erbakan Univ, Meram Vocat Sch, TR-42060 Konya, Turkey
[4] Univ Bordeaux, CNRS, Arts & Metiers Inst Technol, Bordeaux INP,INRAE,I2M Bordeaux, F-33400 Talence, France
关键词
Filament winding; Hybrid composite pipes; Low-velocity impact; VUMAT; Failure criteria; FATIGUE FAILURE BEHAVIOR; FUNCTIONAL FAILURE; DYNAMIC-RESPONSE; MECHANICAL PERFORMANCE; STACKING-SEQUENCE; GLASS/EPOXY; TUBES; SIMULATION; LIFE; PREDICTION;
D O I
10.1016/j.compstruct.2021.114520
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Pressurized hybrid composite pipe structures, produced by filament wound subjected to impact loads, were numerically investigated. A combined 3D-FE Model based on the use of interlaminar and intralaminar damage models is established. Intralaminar damages such as matrix cracking and fibre failures are predicted using 3D Hashin criteria, whereas interlaminar damage (delamination) was evaluated using cohesive zone elements. The damage model was coded and implemented as a user-defined material subroutine (VUMAT) for Abaqus/Explicit. Numerical results in the form of contact force, displacement and energy dissipated compare well with the experimental results. Predicted matrix damage in each cross-ply of hybrid composite pipe and delamination onset were also presented in this paper. The ability of this new 3D model to simulate the damage evolution in the full-scale pressurized hybrid composite pipe under low-velocity impact events were demonstrated throughout comparison with existing experimental results published.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Predicting low-velocity impact damage on a stiffened composite panel
    Faggiani, A.
    Falzon, B. G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (06) : 737 - 749
  • [32] Characterization of Low-Velocity Impact Damage in Asymmetric Composite Shells
    Ferreira, Luis Miguel
    Coelho, Carlos A. C. P.
    Reis, Paulo N. B.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2025, 11 (01): : 98 - 109
  • [33] The Influence of the Boundary Conditions on Low-Velocity Impact Composite Damage
    Amaro, A. M.
    Reis, P. N. B.
    Magalhaes, A. G.
    de Moura, M. F. S. F.
    STRAIN, 2011, 47 : E220 - E226
  • [34] THE LOW-VELOCITY IMPACT DAMAGE RESISTANCE OF THE COMPOSITE STRUCTURES - A REVIEW
    Ahmed, Azzam
    Wei, Li
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2015, 40 (02) : 127 - 145
  • [35] Numerical model of curved composite tiles under low-velocity impact loading
    Akbarieh, Shiva Rezaei
    Ma, Dayou
    Sbarufatti, Claudio
    Manes, Andrea
    JOURNAL OF COMPOSITE MATERIALS, 2025, 59 (05) : 661 - 680
  • [36] Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact
    Zhang, Chenxu
    Huang, Jia
    Li, Xi
    Zhang, Chao
    FIBERS AND POLYMERS, 2020, 21 (12) : 2873 - 2887
  • [37] Delamination prediction of composite filament wound vessel with metal liner under low velocity impact
    Zheng, Changliang
    Ren, Minfa
    Zhao, Wei
    Chen, Haoran
    COMPOSITE STRUCTURES, 2006, 75 (1-4) : 387 - 392
  • [38] Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact
    Chenxu Zhang
    Jia Huang
    Xi Li
    Chao Zhang
    Fibers and Polymers, 2020, 21 : 2873 - 2887
  • [39] A progressive failure model for composite laminates subjected to low velocity impact damage
    Donadon, M. V.
    Iannucci, L.
    Falzon, B. G.
    Hodgkinson, J. M.
    de Almeida, S. F. M.
    COMPUTERS & STRUCTURES, 2008, 86 (11-12) : 1232 - 1252
  • [40] Damage progressive model of compression of composite laminates after low velocity impact
    Cheng, XQ
    Li, ZN
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (05) : 618 - 626