Representation and classification of high-dimensional biomedical spectral data

被引:6
|
作者
Pedrycz, W. [1 ]
Lee, D. J. [1 ]
Pizzi, N. J. [2 ,3 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2G7, Canada
[2] CNR, Inst Biodiagnost, Winnipeg, MB R3B 1Y6, Canada
[3] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biomedical data analysis; Data classification; Principal component analysis; Feature reduction; Classifier fusion; MAGNETIC-RESONANCE IMAGES; NEURAL-NETWORKS; SEGMENTATION; REDUCTION; PCA; NIR;
D O I
10.1007/s10044-009-0170-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this study is to compare the effectiveness of some standard feature reduction and classification techniques (including principal component analysis, PCA; multilayer perceptrons, MLPs; and nearest neighbor classifiers, k-NN) against several proposed variants for the analysis of high-dimensional biomedical spectral data. First, the original feature space is augmented by nonlinear transformations of the original features. We present an extension of sub-pattern PCA (SpPCA) proposed by Chen, which exploits sub-patterns (rather than complete original patterns) in the process of dimensionality reduction. Comprehensive experiments demonstrate the effectiveness of SpPCA over standard PCA. SpPCA leads to the development of individually reduced subspaces and, because of the local nature of this processing, the effectiveness of the reduction and classification processes may be enhanced. With respect to classifier topologies, we present and contrast two common classifiers, MLP and k-NN, as well as several fusion strategies. Finally, some general design guidelines are offered. The experimental framework uses biomedical data acquired from magnetic resonance spectrometers.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 50 条
  • [21] Efficient Sparse Representation for Learning With High-Dimensional Data
    Chen, Jie
    Yang, Shengxiang
    Wang, Zhu
    Mao, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4208 - 4222
  • [22] Efficient Representation Learning for High-Dimensional Imbalance Data
    Mirza, Bilal
    Kok, Stanley
    Lin, Zhiping
    Yeo, Yong Kiang
    Lai, Xiaoping
    Cao, Jiuwen
    Sepulveda, Jose
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 511 - 515
  • [23] CANONICAL VARIATE ANALYSIS OF HIGH-DIMENSIONAL SPECTRAL DATA
    KIIVERI, HT
    TECHNOMETRICS, 1992, 34 (03) : 321 - 331
  • [24] A scalable software solution for anonymizing high-dimensional biomedical data
    Meurers, Thierry
    Bild, Raffael
    Do, Kieu-Mi
    Prasser, Fabian
    GIGASCIENCE, 2021, 10 (10):
  • [25] Multiview Spectral Clustering of High-Dimensional Observational Data
    Roman-Messina, A.
    Castro-Arvizu, Claudia M.
    Castillo-Tapia, Alejandro
    Murillo-Aguirre, Erlan R.
    Rodriguez-Villalon, O.
    IEEE ACCESS, 2023, 11 : 115884 - 115893
  • [26] Data-dependent kernels for high-dimensional data classification
    Wang, JD
    Kwok, JT
    Shen, HC
    Quan, L
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 102 - 107
  • [27] Exploration of high-dimensional data manifolds for object classification
    Shah, N
    Waagen, D
    Ordaz, M
    Cassabaum, M
    Coit, A
    AUTOMATIC TARGET RECOGNITON XV, 2005, 5807 : 400 - 408
  • [28] Clonal Selection Classification Algorithm for High-Dimensional Data
    Liu, Ruochen
    Zhang, Ping
    Jiao, Licheng
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 98 : 89 - 95
  • [29] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [30] SENSING-AWARE CLASSIFICATION WITH HIGH-DIMENSIONAL DATA
    Orten, Burkay
    Ishwar, Prakash
    Karl, W. Clem
    Saligrama, Venkatesh
    Pien, Homer
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3700 - 3703