Automatic classification of skin lesions using color mathematical morphology-based texture descriptors

被引:7
|
作者
Gonzalez-Castro, Victor [1 ]
Debayle, Johan [1 ]
Wazaefi, Yanal [2 ]
Rahim, Mehdi [2 ]
Gaudy-Marqueste, Caroline [3 ]
Grob, Jean-Jacques [3 ]
Fertil, Bernard [2 ]
机构
[1] Ecole Natl Super Mines, LGF UMR CNRS 5307, F-42023 St Etienne, France
[2] UMR CNRS 7296, Lab Sci Informat & Syst, Marseille, France
[3] Hop Enfants La Timone, Serv Dermatol, Marseille, France
关键词
Melanoma; Color texture description; Mathematical morphology; Color adaptive neighborhoods; Self-organizing maps; ABCD RULE; DERMOSCOPY; DERMATOSCOPY;
D O I
10.1117/12.2182592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an automatic classification method of skin lesions from dermoscopic images is proposed. This method is based on color texture analysis based both on color mathematical morphology and Kohonen SelfOrganizing Maps (SOM), and it does not need any previous segmentation process. More concretely, mathematical morphology is used to compute a local descriptor for each pixel of the image, while the SOM is used to cluster them and, thus, create the texture descriptor of the global image. Two approaches are proposed, depending on whether the pixel descriptor is computed using classical (i.e. spatially invariant) or adaptive (i.e. spatially variant) mathematical morphology by means of the Color Adaptive Neighborhoods (CANs) framework. Both approaches obtained similar areas under the ROC curve (AUC): 0.854 and 0.859 outperforming the AUC built upon dermatologists' predictions (0.792).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] COLOR SEGMENTATION FOR SKIN LESIONS CLASSIFICATION
    Masood, N. A.
    Mashali, H. M.
    Mohamed, Abdalla S. A.
    2008 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE, 2008, : 76 - +
  • [32] Mathematical morphology-based islanding detection for distributed generation
    Farhan, Musliyarakath Aneesa
    Swarup, K. Shanti
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (02) : 518 - 525
  • [33] Texture Classification using Multiple Local Descriptors
    Oraibi, Zakariya A.
    Irio, Morgane
    Hafiane, Adel
    Palaniappan, Kannappan
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [34] Automatic classification of skin burn colour images using texture-based feature extraction
    Sevik, Ugur
    Karakullukcu, Erdinc
    Berber, Tolga
    Akbas, Yesim
    Turkyilmaz, Serdar
    IET IMAGE PROCESSING, 2019, 13 (11) : 2018 - 2028
  • [35] Automatic skin pixel selection and skin color classification
    Yoon, Sangho
    Harville, Michael
    Baker, Harlyn
    Bhatii, Nina
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 941 - +
  • [36] Hand-Crafted vs Learned Descriptors for Color Texture Classification
    Napoletano, Paolo
    COMPUTATIONAL COLOR IMAGING, CCIW 2017, 2017, 10213 : 259 - 271
  • [37] Automatic produce classification from images using color, texture and appearance cues
    Rocha, Anderson
    Hauagge, Daniel C.
    Wainer, Jacques
    Goldenstein, Siome
    SIBGRAPI 2008: XXI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2008, : 3 - 10
  • [38] Automatic Date Fruit Classification By Using Local Texture Descriptors And Shape-Size Features
    Muhammad, Ghulam
    UKSIM-AMSS EIGHTH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS 2014), 2014, : 174 - 179
  • [39] New image descriptors based on color, texture, shape, and wavelets for object and scene image classification
    Banerji, Sugata
    Sinha, Atreyee
    Liu, Chengjun
    NEUROCOMPUTING, 2013, 117 : 173 - 185
  • [40] Automatic methods for diagnosis of glaucoma using texture descriptors based on phylogenetic diversity
    Vieira de Carvalho Junior, Antonio Sousa
    Carvalho, Edson Damasceno
    de Carvalho Filho, Antonio Oseas
    de Sousa, Alcilene Dalilia
    Silva, Aristofanes Correa
    Gattass, Marcelo
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 71 : 102 - 114