On the volume of nodal sets for eigenfunctions of the Laplacian on the torus

被引:60
|
作者
Rudnick, Zeev [1 ]
Wigman, Igor [2 ,3 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
ANNALES HENRI POINCARE | 2008年 / 9卷 / 01期
基金
以色列科学基金会;
关键词
D O I
10.1007/s00023-007-0352-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the volume of nodal sets for eigenfunctions of the Laplacian on the standard torus in two or more dimensions. We consider a sequence of eigenvalues 4 pi(2) E with growing multiplicity N -> infinity, and compute the expectation and variance of the volume of the nodal set with respect to a Gaussian probability measure on the eigenspaces. We show that the expected volume of the nodal set is const root E. Our main result is that the variance of the volume normalized by root E is bounded by O(1/root N), so that the normalized volume has vanishing fluctuations as we increase the dimension of the eigenspace.
引用
收藏
页码:109 / 130
页数:22
相关论文
共 50 条