High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition

被引:1
|
作者
Amani, Matin [1 ,2 ]
Burke, Robert A. [3 ]
Ji, Xiang [4 ]
Zhao, Peida [1 ,2 ]
Lien, Der-Hsien [1 ,2 ]
Taheri, Peyman [1 ]
Ahn, Geun Ho [1 ,2 ]
Kirya, Daisuke [1 ,2 ]
Ager, Joel W., III [2 ]
Yablonovitch, Eli [1 ,2 ]
Kong, Jing [4 ]
Dubey, Madan [3 ]
Jayey, Ali [1 ,2 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[4] MIT, Elect Engn & Comp Sci, 77 Mass Ave, Cambridge, MA 02139 USA
关键词
transition metal dichalcogenide; MoS2; chemical vapor deposition; quantum yield; radiative lifetime; biexcitonic recombination; SPONTANEOUS EMISSION; BAND-GAP; PHOTOLUMINESCENCE; TRANSPORT; GRAPHENE; DEFECTS; STRAIN; ENERGY; STATES; FILMS;
D O I
10.1021/acsnano.6603443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from similar to 0.1% in the as-grown case to similar to 30% after treatment, with enhancement factors ranging from 100 to 1500x depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5-10%). The discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.
引用
收藏
页码:6535 / 6541
页数:7
相关论文
共 50 条
  • [41] Data-driven assessment of chemical vapor deposition grown MoS2 monolayer thin films
    Costine, Anna
    Delsa, Paige
    Li, Tianxi
    Reinke, Petra
    Balachandran, Prasanna V.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (23)
  • [42] Solving the puzzle of higher photoluminescence yield at the edges of MoS2 monolayers grown by chemical vapor deposition
    Mujeeb, Faiha
    Mahamiya, Vikram
    Singh, Arushi
    Kothari, Mansi
    Chowdhury, Arindam
    Shukla, Alok
    Dhar, Subhabrata
    APPLIED PHYSICS LETTERS, 2024, 125 (21)
  • [43] High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Mono layer MoS2 Transistors
    Liu, Bilu
    Chen, Liang
    Liu, Gang
    Abbas, Ahmad N.
    Fathi, Mohammad
    Zhou, Chongwu
    ACS NANO, 2014, 8 (05) : 5304 - 5314
  • [44] Effect of aerosol chemical vapor deposition on characteristics of MoS2 particles
    S. E. Aleksandrov
    K. D. Filatov
    A. B. Speshilova
    K. S. Tyurikov
    V. D. Andreeva
    Russian Journal of Applied Chemistry, 2016, 89 : 1596 - 1600
  • [45] Chemical vapor deposition synthesis of V-doped MoS2
    Yang Yang
    Qing-Rong Liang
    Chun-Li Zhu
    Guo-Zhong Zheng
    Jian Zhang
    Shou-Jun Zheng
    Yung-Chang Lin
    De-Zhi Zheng
    Jia-Dong Zhou
    Rare Metals, 2023, 42 : 3985 - 3992
  • [46] Role of the Growth Temperature in MoS2 Growth by Chemical Vapor Deposition
    Kim, Min-Woo
    Kim, Ja-Yeon
    Cho, Yoo-Hyun
    Park, Hyun-Sun
    Kwon, Min-Ki
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (03) : 2140 - 2143
  • [47] Chemical vapor deposition synthesis of V-doped MoS2
    Yang, Yang
    Liang, Qing-Rong
    Zhu, Chun-Li
    Zheng, Guo-Zhong
    Zhang, Jian
    Zheng, Shou-Jun
    Lin, Yung-Chang
    Zheng, De-Zhi
    Zhou, Jia-Dong
    RARE METALS, 2023, 42 (12) : 3985 - 3992
  • [48] Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition
    Ling, Xi
    Lee, Yi-Hsien
    Lin, Yuxuan
    Fang, Wenjing
    Yu, Lili
    Dresselhaus, Mildred S.
    Kong, Jing
    NANO LETTERS, 2014, 14 (02) : 464 - 472
  • [49] Effect of aerosol chemical vapor deposition on characteristics of MoS2 particles
    Aleksandrov, S. E.
    Filatov, K. D.
    Speshilova, A. B.
    Tyurikov, K. S.
    Andreeva, V. D.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (10) : 1596 - 1600
  • [50] Catalytic chemical vapor deposition and structural analysis of MoS2 nanotubes
    Weng, Mengting
    Zhang, Meiqi
    Yanase, Takashi
    Uehara, Fumiya
    Nagahama, Taro
    Shimada, Toshihiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (03)