On Approximate Solutions to Support Vector Machines

被引:0
|
作者
Cao, Dongwei [1 ]
Boley, Daniel [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to speed up the training process of support vector machines (SVM) by resorting to an approximate SVM, where a small number of representatives are extracted from the original training data set and used for training. Theoretical studies show that, in order for the approximate SVM to be similar to the exact SVM given by the original training data set, kernel k-means should be used to extract the representatives. As practical variations, we also propose two efficient implementations of the proposed algorithm, where approximations to kernel k-means are used. The proposed algorithms are compared against the standard training algorithm over real data sets.
引用
收藏
页码:534 / 538
页数:5
相关论文
共 50 条
  • [21] Editing support vector machines
    Ke, HX
    Zhang, XG
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1464 - 1467
  • [22] Ellipsoidal Support Vector Machines
    Momma, Michinari
    Hatano, Kohei
    Nakayama, Hiroki
    PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 31 - 46
  • [23] Support vector machines and regularization
    Cherkassky, V
    Ma, YQ
    Seventh IASTED International Conference on Signal and Image Processing, 2005, : 166 - 171
  • [24] Nested support vector machines
    Lee, Gyemin
    Scott, Clayton
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1985 - 1988
  • [25] Selective support vector machines
    Onur Seref
    O. Erhun Kundakcioglu
    Oleg A. Prokopyev
    Panos M. Pardalos
    Journal of Combinatorial Optimization, 2009, 17 : 3 - 20
  • [26] Oblique support vector machines
    Yao, CC
    Yu, PT
    PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2004, : 699 - 702
  • [27] Hierarchical support vector machines
    Liu, ZG
    Shi, WZ
    Qin, QQ
    Li, XW
    Xie, DH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 186 - 189
  • [28] Nested Support Vector Machines
    Lee, Gyemin
    Scott, Clayton
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1648 - 1660
  • [29] Minimax support vector machines
    Davenport, Mark A.
    Baraniuk, Richard G.
    Scott, Clayton D.
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 630 - +
  • [30] Sex with Support Vector Machines
    Moghaddam, B
    Yang, MH
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 960 - 966