Modeling of reaction-diffusion processes of synthesis of materials with regular (periodic) microstructure

被引:3
|
作者
Shevchenko, V. Ya. [1 ]
Makogon, A. I. [1 ]
Sychov, M. M. [1 ]
机构
[1] Russian Acad Sci, Inst Silicate Chem, St Petersburg 199034, Russia
来源
OPEN CERAMICS | 2021年 / 6卷
基金
俄罗斯科学基金会;
关键词
Reaction-diffusion processes; Turing reactions; Triply periodic minimal surface; Regular microstructure; Gray-Scott model; LEAD-FREE PIEZOCERAMICS; X-RAY-DIFFRACTION; PHASE-TRANSITIONS; SINGLE-CRYSTALS; ELECTROMECHANICAL PROPERTIES; RELAXOR FERROELECTRICS; PEROVSKITE COMPOUNDS; DEPENDENT PROPERTIES; TEMPERATURE; STATE;
D O I
10.1016/j.oceram.2021.100088
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The paper represents results of modeling of reaction-diffusion processes that ensure the formation of materials with a regular (periodic) interconnected microstructure. A numerical method is proposed for solving the reactiondiffusion system of Turing equations. Using the Gray-Scott model as an example, it is shown that under certain conditions a system is formed with the geometry of triply periodic minimal surface (TPMS). It is shown that Turing reaction-diffusion processes can become the basis of a new technology of materials with an adjustable (periodic) microstructure.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Solvable multispecies reaction-diffusion processes
    Roshani, F
    Khorrami, M
    PHYSICAL REVIEW E, 2001, 64 (01) : 6 - 011101
  • [22] Infinite Dimensional Reaction-diffusion Processes
    陈木法
    Acta Mathematica Sinica, 1985, (03) : 261 - 273
  • [23] Chemical computing with reaction-diffusion processes
    Gorecki, J.
    Gizynski, K.
    Guzowski, J.
    Gorecka, J. N.
    Garstecki, P.
    Gruenert, G.
    Dittrich, P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2046):
  • [24] PERIODIC-SOLUTIONS TO REACTION-DIFFUSION EQUATIONS
    GREENBERG, JM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (02) : 199 - 205
  • [25] On Periodic Solutions of a Nonlinear Reaction-Diffusion System
    Kosov, A. A.
    Semenov, E., I
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 35 - 46
  • [26] PERSISTENCE AND PROPAGATION IN PERIODIC REACTION-DIFFUSION MODELS
    Hamel, Francois
    Roques, Lionel
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 217 - 228
  • [27] A PERIODIC REACTION-DIFFUSION MODEL WITH A QUIESCENT STAGE
    Wang, Feng-Bin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 283 - 295
  • [28] Pore network modeling of reaction-diffusion in hierarchical porous particles: The effects of microstructure
    Sadeghi, Mohammad Amin
    Aghighi, Mahmoudreza
    Barralet, Jake
    Gostick, Jeff T.
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 1002 - 1011
  • [29] Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis
    Garzon-Alvarado, Diego A.
    Velasco, Marco A.
    Narvaez-Tovar, Carlos A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (02) : 147 - 155
  • [30] A reaction-diffusion system with periodic front dynamics
    Medvedev, GS
    Kaper, TJ
    Kopell, N
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1601 - 1638