A new non-parametric detector of univariate outliers for distributions with unbounded support

被引:3
|
作者
Bardet, Jean-Marc [1 ]
Dimby, Solohaja-Faniaha [1 ]
机构
[1] Univ Paris 1 Pantheon Sorbonne, SAMM, 90 Rue Tolbiac, F-75634 Paris, France
关键词
Outlier detection; Order statistics; Hill estimator; Non-parametric test;
D O I
10.1007/s10687-017-0295-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to construct a new non-parametric detector of univariate outliers and to study its asymptotic properties. This detector is based on a Hill's type statistic. It satisfies a unique asymptotic behavior for a large set of probability distributions with positive unbounded support (for instance: for the absolute value of Gaussian, Gamma, Weibull, Student or regular variations distributions). We have illustrated our results by numerical simulations which show the accuracy of this detector with respect to other usual univariate outlier detectors (Tukey, MAD or Local Outlier Factor detectors). The detection of outliers in a database providing the prices of used cars is also proposed as an application to real-life database.
引用
收藏
页码:751 / 775
页数:25
相关论文
共 50 条
  • [41] Generalized EM estimation for semi-parametric mixture distributions with discretized non-parametric component
    Jun Ma
    Sigurbjorg Gudlaugsdottir
    Graham Wood
    Statistics and Computing, 2011, 21 : 601 - 612
  • [42] A new non-parametric estimator for instant system availability
    Huang, Kai
    Mi, Jie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 18 - 29
  • [43] A new method for non-parametric multivariate analysis of variance
    Anderson, MJ
    AUSTRAL ECOLOGY, 2001, 26 (01) : 32 - 46
  • [44] A new non-parametric estimation of Gabor spectrum envelopes
    Miyanaga, Y
    Imai, H
    Tochinai, K
    1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 1 - 6
  • [45] 'New and improved' direct marketing: A non-parametric approach
    Racine, JS
    ECONOMETRIC MODELS IN MARKETING, 2002, 16 : 141 - 164
  • [46] A new non-parametric cross-spectrum estimator
    Ioannidis, Evangelos E.
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (05) : 808 - 827
  • [47] New methods of non-parametric identification for PID control
    Johnson, MA
    Crowe, J
    ADAPTIVE SYSTEMS IN CONTROL AND SIGNAL PROCESSING 1998, 2000, : 273 - 278
  • [48] A NON-PARAMETRIC CFAR DETECTOR BASED ON SAR SEA CLUTTER STATISTICAL MODELING
    Martin-de-Nicolas, J.
    Jarabo-Amores, P.
    Rey-Maestre, N.
    Mata-Moya, D.
    Barcena-Humanes, J. L.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4426 - 4430
  • [49] Detecting Gradual Structure Changes of Non-parametric Distributions via Kernel Complexity
    Hirai, So
    Yamanishi, Kenji
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 17 - 27
  • [50] Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
    Murphy, Kieran
    Esteves, Carlos
    Jampani, Varun
    Ramalingam, Srikumar
    Makadia, Ameesh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139