Nonlinear travelling internal waves with piecewise-linear shear profiles

被引:2
|
作者
Oliveras, K. L. [1 ]
Curtis, C. W. [2 ]
机构
[1] Seattle Univ, Math Dept, Seattle, WA 98122 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
基金
美国国家科学基金会;
关键词
instability; internal waves; stratified flows; SOLITARY WAVES; WATER-WAVES; NONLOCAL FORMULATION; FINITE DEPTH; GRAVITY; INSTABILITIES; EXPANSIONS; EQUATION; STEEP;
D O I
10.1017/jfm.2018.679
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. (J. Fluid Mech., vol. 562, 2006, pp. 313-343), we extend the work of Ashton & Fokas (J. Fluid Mech., vol. 689, 2011, pp. 129-148) and Haut & Ablowitz (J. Fluid Mech., vol. 631, 2009, pp. 375-396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier-Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.
引用
收藏
页码:984 / 1013
页数:30
相关论文
共 50 条
  • [21] Design of a nonlinear controller based on a piecewise-linear Hammerstein model
    Dolanc, G.
    Strmcnik, S.
    2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 309 - 314
  • [22] Design of a nonlinear controller based on a piecewise-linear Hammerstein model
    Dolanc, Gregor
    Strmcnik, Stanko
    SYSTEMS & CONTROL LETTERS, 2008, 57 (04) : 332 - 339
  • [23] Bifurcation of piecewise-linear nonlinear vibration system of vehicle suspension
    Shun Zhong
    Yu-shu Chen
    Applied Mathematics and Mechanics, 2009, 30 : 677 - 684
  • [24] GENERALIZATION OF LINEAR AND PIECEWISE-LINEAR PROGRAMMING
    TETEREV, AG
    MATEKON, 1970, 6 (03): : 246 - 259
  • [25] Internal solitary waves in the presence of linear and nonlinear shear-currents
    Zhao, Binbin
    Zhang, Tianyu
    Duan, Wenyang
    Wang, Zhan
    Hayatdavoodi, Masoud
    Ertekin, R. Cengiz
    WAVE MOTION, 2023, 123
  • [26] CANONICAL PIECEWISE-LINEAR NETWORKS
    LIN, JN
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (01): : 43 - 50
  • [27] Periods of piecewise-linear recurrences
    Gordon, B
    MATHEMATICAL PROPERTIES OF SEQUENCES AND OTHER COMBINATORIAL STRUCTURES, 2003, 726 : 17 - 22
  • [28] CANONICAL PIECEWISE-LINEAR ANALYSIS
    CHUA, LO
    YING, RLP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (03): : 125 - 140
  • [29] CANONICAL PIECEWISE-LINEAR MODELING
    CHUA, LO
    DENG, AC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (05): : 511 - 525
  • [30] PIECEWISE-LINEAR INTERFACE CALCULATION
    LI, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1995, 320 (08): : 391 - 396