Nonlinear travelling internal waves with piecewise-linear shear profiles

被引:2
|
作者
Oliveras, K. L. [1 ]
Curtis, C. W. [2 ]
机构
[1] Seattle Univ, Math Dept, Seattle, WA 98122 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
基金
美国国家科学基金会;
关键词
instability; internal waves; stratified flows; SOLITARY WAVES; WATER-WAVES; NONLOCAL FORMULATION; FINITE DEPTH; GRAVITY; INSTABILITIES; EXPANSIONS; EQUATION; STEEP;
D O I
10.1017/jfm.2018.679
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. (J. Fluid Mech., vol. 562, 2006, pp. 313-343), we extend the work of Ashton & Fokas (J. Fluid Mech., vol. 689, 2011, pp. 129-148) and Haut & Ablowitz (J. Fluid Mech., vol. 631, 2009, pp. 375-396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier-Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.
引用
收藏
页码:984 / 1013
页数:30
相关论文
共 50 条
  • [1] Travelling fronts in a piecewise-linear bistable system
    Bakanas, R
    NONLINEARITY, 2003, 16 (01) : 313 - 325
  • [2] PIECEWISE-LINEAR THEORY OF NONLINEAR NETWORKS
    FUJISAWA, T
    KUH, ES
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (02) : 307 - +
  • [3] Nonlinear Energy Sinks With Piecewise-Linear Nonlinearities
    AL-Shudeifat, Mohammad A.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (12):
  • [4] Piecewise-linear approximation of nonlinear dynamical systems
    Storace, M
    De Feo, O
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (04): : 830 - 842
  • [5] Piecewise-linear soliton equations and piecewise-linear integrable maps
    Quispel, GRW
    Capel, HW
    Scully, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2491 - 2503
  • [6] Stability of travelling fronts in a piecewise-linear reaction-diffusion system
    Zemskov, EP
    Zykov, VS
    Kassner, K
    Müller, SC
    NONLINEARITY, 2000, 13 (06) : 2063 - 2076
  • [7] PIECEWISE-LINEAR BASIS FUNCTIONS AND PIECEWISE-LINEAR SIGNAL EXPANSIONS
    PAUL, CR
    KOCH, RW
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1974, AS22 (04): : 263 - 268
  • [8] Statistical linearization of nonlinear element with a piecewise-linear characteristic
    Kazakov, A.V.
    Girya, N.V.
    Soviet journal of communications technology & electronics, 1991, 36 (05): : 129 - 132
  • [9] Nonlinear system identification with lattice piecewise-linear functions
    Wang, SN
    Narendra, KS
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 388 - 393
  • [10] DYNAMIC PIECEWISE-LINEAR SIMULATION OF NONLINEAR RADIOELECTRONIC NETWORKS
    GUMEN, NB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1988, 31 (09): : 14 - 19