Atom-interferometric gravitational-wave detection using heterodyne laser links

被引:75
|
作者
Hogan, Jason M. [1 ]
Kasevich, Mark A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
SENSOR; LISA;
D O I
10.1103/PhysRevA.94.033632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a gravitational-wave detection method based on heterodyne laser links and light-pulse atom interferometry that enables high sensitivity gravitational-wave detection in the 0.1-mHz to 1-Hz frequency band using a single, long (> 10(8) m), detector baseline. The detection baseline in previous atom-based proposals was constrained by the need for a reference laser to remain collimated over the optical propagation path between two satellites. Here we circumvent this requirement by employing a strong local oscillator laser near each atom ensemble that is phase referenced or phase locked to the reference laser beam. Longer baselines offer a number of potential advantages, including enhanced sensitivity, simplified atom optics, and reduced atomic source flux requirements.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] THERMAL LENSING IN RECYCLING INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    STRAIN, KA
    DANZMANN, K
    MIZUNO, J
    NELSON, PG
    RUDIGER, A
    SCHILLING, R
    WINKLER, W
    PHYSICS LETTERS A, 1994, 194 (1-2) : 124 - 132
  • [32] Radiation pressure and stability of interferometric gravitational-wave detectors
    Chickarmane, V
    Dhurandhar, SV
    Barillet, R
    Hello, P
    Vinet, JY
    APPLIED OPTICS, 1998, 37 (15): : 3236 - 3245
  • [33] MIRROR THERMAL NOISE IN INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    BONDU, F
    VINET, JY
    PHYSICS LETTERS A, 1995, 198 (02) : 74 - 78
  • [34] Quantum correlation measurements in interferometric gravitational-wave detectors
    Martynov, D. V.
    Frolov, V. V.
    Kandhasamy, S.
    Izumi, K.
    Miao, H.
    Mavalvala, N.
    Hall, E. D.
    Lanza, R.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Adams, C.
    Adhikari, R. X.
    Anderson, S. B.
    Ananyeva, A.
    Appert, S.
    Arai, K.
    Aston, S. M.
    Ballmer, S. W.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Bartos, I.
    Batch, J. C.
    Bell, A. S.
    Betzwieser, J.
    Billingsley, G.
    Birch, J.
    Biscans, S.
    Biwer, C.
    Blair, C. D.
    Bork, R.
    Brooks, A. F.
    Ciani, G.
    Clara, F.
    Countryman, S. T.
    Cowart, M. J.
    Coyne, D. C.
    Cumming, A.
    Cunningham, L.
    Danzmann, K.
    Costa, C. F. Da Silva
    Daw, E. J.
    Debra, D.
    DeRosa, R. T.
    DeSalvo, R.
    Dooley, K. L.
    Doravari, S.
    Driggers, J. C.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [35] SIMULATION OF THERMAL EFFECTS IN INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    HELLO, P
    VINET, JY
    PHYSICS LETTERS A, 1993, 178 (5-6) : 351 - 356
  • [36] Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)
    Gao, Dong-Feng
    Wang, Jin
    Zhan, Ming-Sheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (01) : 37 - 42
  • [37] Atomic Interferometric Gravitational-Wave Space Observatory(AIGSO)
    高东峰
    王谨
    詹明生
    Communications in Theoretical Physics, 2018, 69 (01) : 37 - 42
  • [38] Analysis of data from interferometric gravitational-wave detectors
    Brady, PR
    GRAVITATIONAL-WAVE DETECTION, 2003, 4856 : 193 - 203
  • [39] HIGH-POWER LASERS AND NOVEL OPTICS FOR LASER INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    VEITCH, PJ
    MUNCH, J
    HAMILTON, MW
    OTTAWAY, D
    GREENTREE, A
    TIKHOMIROV, A
    AUSTRALIAN JOURNAL OF PHYSICS, 1995, 48 (06): : 999 - 1006
  • [40] GEO 600 -: A short-arm laser-interferometric gravitational-wave detector
    Rüdiger, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 327 - 328