A group analysis of the 2D Navier-Stokes-Fourier equations

被引:9
|
作者
Grassi, V
Leo, RA
Soliani, G
Tempesta, P
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[2] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
Lie groups; fluid dynamics;
D O I
10.1016/S0378-4371(00)00628-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a (2 + 1)-dimensional model of an incompressible thermoconducting fluid named Navier-Stokes-Fourier system. Wt: apply a group-theoretical analysis. In correspondence of the generators of the symmetry group allowed by this model, exact solutions are found. Some of them show possible interesting physical interpretations. In our first exploration, this feature is illustrated by dealing with simple special cases. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 50 条
  • [31] Homogenization and singular limits for the complete Navier-Stokes-Fourier system
    Feireisl, Eduard
    Novotny, Antonin
    Takahashi, Takeo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 33 - 57
  • [32] On the principle of minimal entropy production for Navier-Stokes-Fourier fluids
    Elvira Barbera
    Continuum Mechanics and Thermodynamics, 1999, 11 : 327 - 330
  • [33] Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System
    Eduard Feireisl
    Antonín Novotný
    Communications in Mathematical Physics, 2013, 321 : 605 - 628
  • [34] Feedback stabilization for the 2D Navier-Stokes equations
    Fursikov, AV
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 179 - 196
  • [35] Ergodicity for the Randomly Forced 2D Navier–Stokes Equations
    Sergei Kuksin
    Armen Shirikyan
    Mathematical Physics, Analysis and Geometry, 2001, 4 : 147 - 195
  • [36] STABILIZATION OF 2D g-NAVIER-STOKES EQUATIONS
    Nguyen Viet Tuan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (03): : 819 - 839
  • [37] Topology of trajectories of the 2D Navier-Stokes equations
    Lee, Jon
    CHAOS, 1992, 2 (04) : 537 - 565
  • [38] Averaging Principles for Stochastic 2D Navier–Stokes Equations
    Peng Gao
    Journal of Statistical Physics, 2022, 186
  • [39] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [40] Generator of Solutions for 2D Navier-Stokes Equations
    Koptev, Alexander, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (03): : 324 - 330