Groups with the weak minimal condition on non-normal non-abelian subgroups

被引:5
|
作者
De Mari, Fausto [1 ]
机构
[1] Univ Napoli Federico II, Naples, Italy
关键词
Metahamiltonian group; Minimax group; Weak minimal condition;
D O I
10.1007/s13366-019-00450-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is called metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a (generalized) soluble group satisfying the weak minimal condition on non-normal non-abelian subgroups is either minimax or metahamiltonian.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [11] PURE SUBGROUPS OF NON-ABELIAN GROUPS
    KERTESZ, A
    KOVACS, LG
    NEUMANN, BH
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (1-2): : 1 - 30
  • [12] Finite groups with Frobenius condition for non-normal primary subgroups
    Zhang, Chi
    Wong, Dein
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5482 - 5489
  • [13] Finite groups with σ-Frobenius condition for non-normal σ-primary subgroups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [14] On the number of subgroups of non-metacyclic minimal non-abelian p-groups
    Kumar, Pradeep
    Jain, Vivek Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [15] Groups with the weak minimal condition for non-subnormal subgroups
    Kurdachenko L.A.
    Smith H.
    Annali di Matematica Pura ed Applicata, 1997, 173 (1) : 299 - 312
  • [16] Minimal Non-abelian Defect Groups
    Sambale, Benjamin
    BLOCKS OF FINITE GROUPS AND THEIR INVARIANTS, 2014, 2127 : 167 - 179
  • [17] GROUPS WITH RESTRICTED NON-NORMAL SUBGROUPS
    BRUNO, B
    PHILLIPS, RE
    MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (02) : 199 - 221
  • [18] Groups with polycyclic non-normal subgroups
    Franciosi, S
    de Giovanni, F
    Newell, ML
    ALGEBRA COLLOQUIUM, 2000, 7 (01) : 33 - 42
  • [19] Groups with Supersoluble Non-normal Subgroups
    De Falco, Maria
    Martusciello, Maria
    Musella, Carmelo
    ALGEBRA COLLOQUIUM, 2016, 23 (02) : 213 - 218
  • [20] On Infinite Groups with Complemented Non-Abelian Subgroups
    Baryshovets, P. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) : 1599 - 1611