Accurate Standard Cell Characterization and Statistical Timing Analysis using Multivariate Adaptive Regression Splines

被引:0
|
作者
Liu, Taizhi [1 ]
Chen, Chang-Chih [1 ]
Milor, Linda [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2015) | 2015年
基金
美国国家科学基金会;
关键词
Standard cell characterization; statistical timing analysis; IMPACT; MODELS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a methodology for standard cell characterization which contains three models: an input capacitance model, a sensitivity model for variational resistive-capacitive loads, and gate and interconnect delay models via multivariate adaptive regression splines (MARS). Our MARS-based methodology has several advantages. Firstly, MARS captures nonlinearities and interactions for high-dimensional problems. Secondly, MARS is an adaptive and intelligent procedure that can 'filter out' negligible parameters without manual intervention while characterizing a complex cell with over 40 devices. Thirdly, our timing methodology has implemented block-based statistical timing analysis (StTA) (for path selection) and path-based StTA (for timing accuracy). We verified our method by comparing our results to SPICE using ten ISCAS85 benchmark circuits. The average errors in the circuit-delay mean and standard deviation (SD) are 1.47% and -1.15% respectively. We also compared our method with traditional quadratic delay models and achieve significant accuracy improvement and consume 38% less run time.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 50 条
  • [41] A nonparametric regression method for multiple longitudinal phenotypes using multivariate adaptive splines
    Zhu, Wensheng
    Zhang, Heping
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (03) : 731 - 743
  • [42] Prediction of energy dissipation on the stepped spillway using the multivariate adaptive regression splines
    Parsaie A.
    Haghiabi A.H.
    Saneie M.
    Torabi H.
    ISH Journal of Hydraulic Engineering, 2016, 22 (03) : 281 - 292
  • [43] Predictors of Anemia after Bariatric Surgery using Multivariate Adaptive Regression Splines
    Lee, Yi-Chih
    Lee, Tian-Shyug
    Lee, Wei-Jei
    Lin, Yang-Chu
    Lee, Chia-Ko
    Liew, Phui-Ly
    HEPATO-GASTROENTEROLOGY, 2012, 59 (117) : 1378 - 1380
  • [44] ESTIMATING STRENGTH OF RUBBERIZED CONCRETE USING EVOLUTIONARY MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    Cheng, Min-Yuan
    Cao, Minh-Tu
    JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2016, 22 (05) : 711 - 720
  • [45] Prediction of mechanical property of steel strips using multivariate adaptive regression splines
    Mukhopadhyay, A.
    Iqbal, A.
    JOURNAL OF APPLIED STATISTICS, 2009, 36 (01) : 1 - 9
  • [46] Prediction of gastro-intestinal absorption using multivariate adaptive regression splines
    Deconinck, E
    Xu, QS
    Put, R
    Coomans, D
    Massart, DL
    Heyden, YV
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2005, 39 (05) : 1021 - 1030
  • [48] Multivariate adaptive regression splines analysis to predict biomarkers of spontaneous preterm birth
    Menon, Ramkumar
    Bhat, Geeta
    Saade, George R.
    Spratt, Heidi
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2014, 93 (04) : 382 - 391
  • [49] Multivariate Adaptive Regression Splines: A Potential Method for Tissue Culture Data Analysis
    Akin, Meleksen
    Eyduran, Sadiye Peral
    Ercisli, Sezai
    Reed, Barbara M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2020, 56 (01) : S29 - S29
  • [50] Multivariate adaptive regression splines analysis to predict biomarkers of spontaneous preterm birth
    Bhat, Geeta
    Spratt, Heidi
    Tamayo, Esther
    Saade, George
    Menon, Ram
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2013, 208 (01) : S210 - S210