Marginalized Neural Network Mixtures for Large-Scale Regression

被引:18
|
作者
Lazaro-Gredilla, Miguel [1 ]
Figueiras-Vidal, Anibal R. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Proc & Commun, Madrid, Spain
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2010年 / 21卷 / 08期
关键词
Bayesian models; Gaussian processes; large data sets; multilayer perceptrons; regression;
D O I
10.1109/TNN.2010.2049859
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For regression tasks, traditional neural networks (NNs) have been superseded by Gaussian processes, which provide probabilistic predictions (input-dependent error bars), improved accuracy, and virtually no overfitting. Due to their high computational cost, in scenarios with massive data sets, one has to resort to sparse Gaussian processes, which strive to achieve similar performance with much smaller computational effort. In this context, we introduce a mixture of NNs with marginalized output weights that can both provide probabilistic predictions and improve on the performance of sparse Gaussian processes, at the same computational cost. The effectiveness of this approach is shown experimentally on some representative large data sets.
引用
收藏
页码:1345 / 1351
页数:8
相关论文
共 50 条
  • [21] A MODULAR RING ARCHITECTURE FOR LARGE-SCALE NEURAL NETWORK IMPLEMENTATIONS
    JUMP, LB
    LIGOMENIDES, PA
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING IV, PTS 1-3, 1989, 1199 : 1127 - 1136
  • [22] Parallel Large-Scale Neural Network Training For Online Advertising
    Qi, Quanchang
    Lu, Guangming
    Zhang, Jun
    Yang, Lichun
    Liu, Haishan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 343 - 350
  • [23] A neural network for hierarchical optimization of nonlinear large-scale systems
    Hou, ZG
    Wu, CP
    Bao, P
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1998, 29 (02) : 159 - 166
  • [24] A hierarchical optimization neural network for large-scale dynamic systems
    Hou, ZG
    AUTOMATICA, 2001, 37 (12) : 1931 - 1940
  • [25] MASSIVELY PARALLEL ARCHITECTURES FOR LARGE-SCALE NEURAL NETWORK SIMULATIONS
    FUJIMOTO, Y
    FUKUDA, N
    AKABANE, T
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (06): : 876 - 888
  • [26] Neural network acceleration of large-scale structure theory calculations
    DeRose, Joseph
    Chen, Shi-Fan
    White, Martin
    Kokron, Nickolas
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (04):
  • [27] Towards Large-Scale Photonic Neural-Network Accelerators
    Hamerly, R.
    Sludds, A.
    Bernstein, L.
    Prabhu, M.
    Roques-Carmes, C.
    Carolan, J.
    Yamamoto, Y.
    Soljacic, M.
    Englund, D.
    2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [28] QUANTILE REGRESSION FOR LARGE-SCALE APPLICATIONS
    Yang, Jiyan
    Meng, Xiangrui
    Mahoney, Michael W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : S78 - S110
  • [29] Large-Scale Sparse Logistic Regression
    Liu, Jun
    Chen, Jianhui
    Ye, Jieping
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 547 - 555
  • [30] Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks
    Bal, Mustafa
    Marey, Ahmed
    Ates, Hasan F.
    Baykas, Tuncer
    Gunturk, Bahadir K.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (08): : 1562 - 1566