Preparation of different FexN/rGO nanocomposites and their application as anodes for lithium-ion battery

被引:7
|
作者
Tian, Lanlan [1 ]
Xie, Yuanlin [1 ]
Lu, Jing [2 ]
Liu, Tiefeng [3 ]
Hu, Qiang [4 ]
Xiao, Yongneng [4 ]
Zhu, Xiaoquan [1 ]
Su, Xintai [1 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, Guangdong Prov Key Lab Solid Wastes Pollut Control, Guangzhou 510006, Guangdong, Peoples R China
[2] CNNC, Geol Party 216, Urumqi 830011, Xinjiang, Peoples R China
[3] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[4] Jihua Lab, Foshan 528200, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron-based nitride; Li-ion battery; Anode; Porous; CAPACITY; NANOPARTICLES; FILMS;
D O I
10.1016/j.jallcom.2022.166208
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron-nitride based materials are considered to be one of the most promising anode materials for Lithium-ion batteries (LIBs) due to their good electrical conductivity and high theoretical capacity. However, iron-based nitrides are easily deteriorated in the long-term lithiation/delithiation process, which reduces the electrochemical stability and limits their large-scale application. Here, we report a Fe3N or Fe2N reduced graphene oxide nanosheets (rGO) composite prepared through a facile annealing process under different atmosphere (NH3/Ar) from Fe3O4 original material. The voids in cubic structure of Fe3N or Fe2N can be beneficial to buffer volume changes during lithiation/delithiation processes and provide active sites, and the rGO is helpful to improve electrical conductivity of composites. Moreover, the proportion of Fe3N in the composite is higher than that of Fe2N, indicating that more cubic structure can be released in Fe3N/rGO. Therefore, Fe3N/rGO showed a higher capacity (513 mA h g(-1) after 200 cycles at a current density of 0.5 A g(-1)), better rate performance and more stable cycling performance. This work provides a new direction for the construction of iron-based nitrides with different valence states as anode active materials for LIBs using Fe3O4 as raw material. (C) 2022 Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Preparation of Silicon Nanostructures for Lithium Ion Battery Anodes
    Mokkelbost, T.
    Fossdal, A.
    Dahl, O.
    Martinez, A. M.
    Sheridan, E.
    Thomassen, M. S.
    Vullum, P. E.
    Rodahl, S.
    Svensson, A. M.
    NANOSTRUCTURED MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 35 (34): : 149 - 158
  • [32] Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes
    Han, SJ
    Jang, BC
    Kim, T
    Oh, SM
    Hyeon, T
    ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) : 1845 - 1850
  • [33] Designed Synthesis of CoO/CuO/rGO Ternary Nanocomposites as High-Performance Anodes for Lithium-Ion Batteries
    Hui Zhang
    Yi-Fan Wang
    Wei-Liang Liu
    Fan-Gong Kong
    Man-Man Ren
    Shou-Juan Wang
    Xin-Qiang Wang
    Xiu-Lan Duan
    Dan Peng
    JOM, 2018, 70 : 1793 - 1799
  • [34] Designed Synthesis of CoO/CuO/rGO Ternary Nanocomposites as High-Performance Anodes for Lithium-Ion Batteries
    Zhang, Hui
    Wang, Yi-Fan
    Liu, Wei-Liang
    Kong, Fan-Gong
    Ren, Man-Man
    Wang, Shou-Juan
    Wang, Xin-Qiang
    Duan, Xiu-Lan
    Peng, Dan
    JOM, 2018, 70 (09) : 1793 - 1799
  • [35] Preparation of RGO/NiO Anode for Lithium-ion Batteries
    Tian, Shiyi
    Zheng, Guoxu
    Liu, Qian
    Ren, Mingyuan
    Yin, Jinghua
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9459 - 9467
  • [36] Facile in situ co-precipitation synthesis of CuO–NiO/rGO nanocomposite for lithium-ion battery anodes
    Mohammad Ranjbar-Azad
    Mohsen Behpour
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 18043 - 18056
  • [37] High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes
    Veerappan, Ganapathy
    SunyoungYoo
    Zhang, Kan
    Ma, Ming
    Kang, Byoungwoo
    Park, Jong Hyeok
    ELECTROCHIMICA ACTA, 2016, 214 : 31 - 37
  • [38] A Comprehensive Review on Metal-Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes
    Chen, Yao
    Chen, Xueye
    Zhang, Yaolong
    ENERGY & FUELS, 2021, 35 (08) : 6420 - 6442
  • [39] High lithium storage performance of α-Fe2O3/graphene nanocomposites as lithium-ion battery anodes
    Xue, Xin-Yu
    Ma, Chun-Hua
    Cui, Chun-Xiao
    Xing, Li-Li
    SOLID STATE SCIENCES, 2011, 13 (08) : 1526 - 1530
  • [40] Chromium(III) oxide carbon nanocomposites lithium-ion battery anodes with enhanced energy conversion performance
    Fu, Ya
    Gu, Hongbo
    Yan, Xingru
    Liu, Jiurong
    Wang, Yiran
    Huang, Jiangnan
    Li, Xiaoyu
    Lv, Hailong
    Wang, Xinzhen
    Guo, Jiang
    Lu, Guixia
    Qiu, Song
    Guo, Zhanhu
    CHEMICAL ENGINEERING JOURNAL, 2015, 277 : 186 - 193