THE NUMBER OF GRIDPOINTS ON HYPERPLANE SECTIONS OF THE d-DIMENSIONAL CUBE

被引:0
|
作者
Abel, Ulrich [1 ]
机构
[1] Tech Hsch Mittelhessen, Dept MND, Wilhelm Leuschner Str 13, D-61169 Friedberg, Germany
关键词
SINC;
D O I
10.1090/proc/14233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deduce a formula for the exact number of gridpoints (i.e., elements of Z(d)) in the extended d-dimensional cube nC(d) = [-n, +n](d) on intersecting hyperplanes. In the special case of the hyperplanes {x is an element of R-d vertical bar x(1) + ... + x(d) = b}, b is an element of Z, these numbers can be written as a finite sum involving products of certain binomial coefficients. Furthermore, we consider the limit as n tends to infinity which can be expressed in terms of Euler-Frobenius numbers. Finally, we state a conjecture on the asymptotic behaviour of this limit as the dimension d tends to infinity.
引用
收藏
页码:5349 / 5355
页数:7
相关论文
共 50 条
  • [31] On d-dimensional dual hyperovals
    Del Fra, A
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 157 - 178
  • [32] PERMANENTS OF D-DIMENSIONAL MATRICES
    DOW, SJ
    GIBSON, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 133 - 145
  • [33] SCOZA for D-dimensional spins
    NTNU, Trondheim, Norway
    Phys A Stat Theor Phys, 1-4 (176-189):
  • [34] d-dimensional arrangement revisited
    Rotter, Daniel
    Vygen, Jens
    INFORMATION PROCESSING LETTERS, 2013, 113 (13) : 498 - 505
  • [35] Antibandwidth of d-Dimensional Meshes
    Torok, Lubomir
    Vrt'o, Imrich
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 471 - +
  • [36] Inexpensive d-dimensional matchings
    Huang, BS
    Perkovic, L
    Schmutz, E
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 50 - 58
  • [37] High dimensional reducible hyperplane sections with multigenera $\leq$ 1
    A. L. Tironi
    Archiv der Mathematik, 2003, 81 : 397 - 401
  • [38] D-dimensional log gravity
    Alishahiha, Mohsen
    Fareghbal, Reza
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [39] D-DIMENSIONAL MOMENTS OF INERTIA
    BENDER, CM
    MEAD, LR
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (11) : 1011 - 1014