Distinct edge geodetic decomposition in graphs

被引:2
|
作者
John, J. [1 ]
Stalin, D. [2 ]
机构
[1] Govt Coll Engn, Dept Math, Tirunelveli 627007, India
[2] Bharathiyar Univ, Res & Dev Ctr, Coimbatore 641046, Tamil Nadu, India
关键词
decomposition; distinct edge geodetic decomposition; distinct edge geodetic decomposition number; edge geodetic number; NUMBER;
D O I
10.22049/cco.2020.26638.1126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection p of edge-disjoint subgraphs G(1),G(2),...,G(n) of G such that every edge of G belongs to exactly one G(i),(1 <= i <= n). The decomposition pi = {G(1),G(2),...,G(n)} of a connected graph G is said to be a distinct edge geodetic decomposition if g(1)(Gi) not equal g(1)(G(j)),(1 <= i not equal j <= n). The maximum cardinality of pi is called the distinct edge geodetic decomposition number of G and is denoted by pi(dg1)(G), where g(1)(G) is the edge geodetic number of G. Some general properties satisfied by this concept are studied. Connected graphs of pi(dg1)(G) >= 2 are characterized and connected graphs of order pi with pi(dg1)(G) = p -2 are characterized.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 50 条
  • [41] Geodetic convexity and kneser graphs
    Bedo, Marcos
    Leite, Joao V. S.
    Oliveira, Rodolfo A.
    Protti, Fabio
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [42] Graphs with Large Geodetic Number
    Ahangar, Hossein Abdollahzadeh
    Kosari, Saeed
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    FILOMAT, 2015, 29 (06) : 1361 - 1368
  • [43] The geodetic numbers of graphs and digraphs
    Chang-hong Lu
    Science in China Series A: Mathematics, 2007, 50 : 1163 - 1172
  • [44] The geodetic numbers of graphs and digraphs
    Lu, Chang-hong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08): : 1163 - 1172
  • [45] AN EXTREMAL PROBLEM IN GEODETIC GRAPHS
    PARTHASARATHY, KR
    SRINIVASAN, N
    DISCRETE MATHEMATICS, 1984, 49 (02) : 151 - 159
  • [46] ON MINIMAL GEODETIC DOMINATION IN GRAPHS
    Nuenay, Hearty M.
    Jamil, Ferdinand P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 403 - 418
  • [47] The (a, b)-forcing geodetic graphs
    Tong, Li-Da
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1623 - 1628
  • [48] An algebraic characterization of geodetic graphs
    Nebesky, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (04) : 701 - 710
  • [49] GEODETIC DOMINATION INTEGRITY IN GRAPHS
    Balaraman, G.
    Kumar, Sampath S.
    Sundareswaran, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 258 - 267
  • [50] GEODETIC GRAPHS OF DIAMETER 2
    BLOKHUIS, A
    BROUWER, AE
    GEOMETRIAE DEDICATA, 1988, 25 (1-3) : 527 - 533