Reducing Homological Conjectures by n-Recollements

被引:29
|
作者
Qin, Yongyun [1 ]
Han, Yang [2 ]
机构
[1] Qujing Normal Univ, Coll Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
[2] Chinese Acad Sci, KLMM, ISS, AMSS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
n-recollement; n-derived-simple algebra; Cartan determinant; Homologically smooth algebra; Gorenstein algebra; ALGEBRAIC K-THEORY; MODULE CATEGORIES; GLOBAL DIMENSION; CARTAN MATRIX; RINGS; LOCALIZATION; FUNCTORS;
D O I
10.1007/s10468-015-9578-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
n-recollements of triangulated categories and n-derived-simple algebras are introduced. The relations between the n-recollements of derived categories of algebras and the Cartan determinants, homological smoothness and Gorensteinness of algebras respectively are clarified. As applications, the Cartan determinant conjecture is reduced to 1-derived-simple algebras, and the Gorenstein symmetry conjecture is reduced to 2-derived-simple algebras.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 50 条
  • [31] On conjectures of Minkowski and Woods for n=8
    Hans-Gill, R. J.
    Raka, Madhu
    Sehmi, Ranjeet
    ACTA ARITHMETICA, 2011, 147 (04) : 337 - 385
  • [32] Proofs of conjectures of Chan for d(n)
    Su-Ping Cui
    The Ramanujan Journal, 2023, 60 : 287 - 294
  • [33] On conjectures of Minkowski and Woods for n=9
    Kathuria, Leetika
    Raka, Madhu
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (04): : 501 - 548
  • [34] LOCAL LANGLANDS CONJECTURES FOR GL(N)
    HENNIART, G
    ASTERISQUE, 1982, (94) : 67 - 85
  • [35] On conjectures of Minkowski and Woods for n=10
    Kathuria, Leetika
    Raka, Madhu
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [36] Proofs of conjectures of Chan for d(n)
    Cui, Su-Ping
    RAMANUJAN JOURNAL, 2023, 60 (01): : 287 - 294
  • [37] A Proof of the (n, k, t)-Conjectures
    Baumann, Stacie
    Briggs, Joseph
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):
  • [38] Standard homological properties for quantum GL(n)
    Donkin, S
    JOURNAL OF ALGEBRA, 1996, 181 (01) : 235 - 266
  • [39] Homological algebra in n-abelian categories
    Luo, Deren
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (04): : 625 - 656