On a lower bound on the number of perfect binary codes

被引:3
|
作者
Malyugin, SA [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
perfect binary codes; lower bounds; i-Component;
D O I
10.1016/S0166-218X(02)00302-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the number of perfect binary codes of length n is greater than 2 2((n+1)/2-1og(n+1)) 2 2((n-3)/4). (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 160
页数:4
相关论文
共 50 条
  • [41] On the number of nonequivalent propelinear extended perfect codes
    Borges, J.
    Mogilnykh, I. Yu
    Rifa, J.
    Solov'eva, F.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [42] Improved lower bounds on the domination number of hypercubes and binary codes with covering radius one
    Wu, Ying-Sian
    Chen, Jun-Yo
    DISCRETE MATHEMATICS, 2024, 347 (02)
  • [43] A Lower Bound of Hash Codes' Performance
    Zhu, Xiaosu
    Song, Jingkuan
    Lei, Yu
    Gao, Lianli
    Shen, Heng Tao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [44] On the lower bound for the length of minimal codes
    Scotti, Martin
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [45] The lower bound on independence number
    李雨生
    CecilC.ROUSSEAU
    臧文安
    Science China Mathematics, 2002, (01) : 64 - 69
  • [46] A Lower Bound on Unknotting Number
    JIMING MA RUIFENG QIU Institute of Mathematics
    Chinese Annals of Mathematics, 2006, (04) : 437 - 440
  • [47] The lower bound on independence number
    Yusheng Li
    Cecil C. Rousseau
    Wen’an Zang
    Science in China Series A: Mathematics, 2002, 45 (1): : 64 - 69
  • [48] A Lower Bound on Unknotting Number*
    Jiming Ma
    Ruifeng Qiu
    Chinese Annals of Mathematics, Series B, 2006, 27 : 437 - 440
  • [49] The lower bound on independence number
    Li, YS
    Rousseau, CC
    Zang, W
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (01): : 64 - 69
  • [50] A lower bound on unknotting number
    Ma, Jiming
    Qiu, Ruifeng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (04) : 437 - 440