Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation

被引:398
|
作者
He, Xin [1 ,2 ]
Zhou, Yong [1 ,2 ]
Zhao, Jiaqi [1 ,2 ]
Zhang, Di [1 ,2 ]
Yao, Rui [1 ,2 ]
Xue, Yong [3 ,4 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Univ Derby, Sch Elect Comp & Math, Derby DE22 1GB, England
基金
中国国家自然科学基金;
关键词
Transformers; Semantics; Image segmentation; Feature extraction; Convolutional neural networks; Remote sensing; Task analysis; Global information embedding; remote sensing (RS); semantic segmentation; Swin transformer; CLASSIFICATION; RECOGNITION;
D O I
10.1109/TGRS.2022.3144165
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global context information is essential for the semantic segmentation of remote sensing (RS) images. However, most existing methods rely on a convolutional neural network (CNN), which is challenging to directly obtain the global context due to the locality of the convolution operation. Inspired by the Swin transformer with powerful global modeling capabilities, we propose a novel semantic segmentation framework for RS images called ST-U-shaped network (UNet), which embeds the Swin transformer into the classical CNN-based UNet. ST-UNet constitutes a novel dual encoder structure of the Swin transformer and CNN in parallel. First, we propose a spatial interaction module (SIM), which encodes spatial information in the Swin transformer block by establishing pixel-level correlation to enhance the feature representation ability of occluded objects. Second, we construct a feature compression module (FCM) to reduce the loss of detailed information and condense more small-scale features in patch token downsampling of the Swin transformer, which improves the segmentation accuracy of small-scale ground objects. Finally, as a bridge between dual encoders, a relational aggregation module (RAM) is designed to integrate global dependencies from the Swin transformer into the features from CNN hierarchically. Our ST-UNet brings significant improvement on the ISPRS-Vaihingen and Potsdam datasets, respectively. The code will be available at <uri>https://github.com/XinnHe/ST-UNet</uri>.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Global and edge enhanced transformer for semantic segmentation of remote sensing
    Wang, Hengyou
    Li, Xiao
    Huo, Lianzhi
    Hu, Changmiao
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5658 - 5673
  • [42] Unsupervised Domain Adaptation for Remote Sensing Semantic Segmentation with Transformer
    Li, Weitao
    Gao, Hui
    Su, Yi
    Momanyi, Biffon Manyura
    REMOTE SENSING, 2022, 14 (19)
  • [43] A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation
    Ma, Xianping
    Zhang, Xiaokang
    Pun, Man-On
    Liu, Ming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [44] CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation
    Wu, Honglin
    Huang, Peng
    Zhang, Min
    Tang, Wenlong
    Yu, Xinyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [45] CTFNet: CNN-Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation
    Wu, Honglin
    Huang, Peng
    Zhang, Min
    Tang, Wenlong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [46] Remote Sensing Image Recognition Algorithm Based on Pseudo Global Swin Transformer
    Wang K.
    Zuo X.
    Yang Y.
    Fei S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (09): : 818 - 831
  • [47] DENSE SWIN-UNET: DENSE SWIN TRANSFORMERS FOR SEMANTIC SEGMENTATION OF PNEUMOTHORAX IN CT IMAGES
    Tang, Zhixian
    Zhang, Jinyang
    Bai, Chulin
    Zhang, Yan
    Liang, Kaiyi
    Yao, Xufeng
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023, 23 (08)
  • [48] Semantic Segmentation Method of UAV Image Based on Window Attention Aggregation Swin Transformer
    Li, Junjie
    Yi, Shi
    He, Runhua
    Liu, Xi
    Computer Engineering and Applications, 2024, 60 (15) : 198 - 210
  • [49] Frequency-Domain Guided Swin Transformer and Global-Local Feature Integration for Remote Sensing Images Semantic Segmentation
    Zhang, Haoxue
    Xie, Gang
    Li, Linjuan
    Xie, Xinlin
    Ren, Jinchang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [50] DENSE SWIN-UNET: DENSE SWIN TRANSFORMERS FOR SEMANTIC SEGMENTATION OF PNEUMOTHORAX IN CT IMAGES
    Tang, Zhixian
    Zhang, Jinyang
    Bai, Chulin
    Zhang, Yan
    Liang, Kaiyi
    Yao, Xufeng
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023,