Gradient-based estimation of uncertain parameters for elliptic partial differential equations

被引:12
|
作者
Borggaard, Jeff [1 ]
van Wyk, Hans-Werner [2 ]
机构
[1] Virginia Tech, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
关键词
parameter estimation; inverse problems in elliptic equations; uncertainty quantification; augmented Lagrangian method; AUGMENTED LAGRANGIAN METHOD; STOCHASTIC COLLOCATION METHOD; INVERSE PROBLEMS; IDENTIFIABILITY; APPROXIMATION; COEFFICIENTS; INTEGRATION;
D O I
10.1088/0266-5611/31/6/065008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the estimation of uncertain distributed diffusion coefficients in elliptic systems based on noisy measurements of the model output. We treat the parameter identification problem as a variational problem over the appropriate stochastic Sobolev spaces and show that minimizers exist and satisfy a saddle point condition. Although a lack of regularity precludes the direct use of gradient-based optimization techniques, a spectral approximation of the observation field allows us to estimate the original problem by a smooth, albeit high dimensional, deterministic optimization problem, the so-called finite noise problem, which lends itself readily to more traditional optimization approaches. We prove that the finite noise minimizers converge to the appropriate infinite dimensional ones, and devise and analyze a stochastic augmented Lagrangian method for locating these numerically. We also discuss the numerical discretization of the finite noise problem, using sparse grid hierarchical finite elements, and present three numerical examples to illustrate our method.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Gradient-based iteration for a class of matrix equations
    Zhang, Huamin
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1201 - 1205
  • [42] A non-gradient method for solving elliptic partial differential equations with deep neural networks
    Peng, Yifan
    Hu, Dan
    Xu, Zin-Qin John
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [43] SOME NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS
    MCALLISTER, GT
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (04): : 772 - 777
  • [44] On the Design of Filters for Gradient-Based Motion Estimation
    Michael Elad
    Patrick Teo
    Yacov Hel-Or
    Journal of Mathematical Imaging and Vision, 2005, 23 : 345 - 365
  • [45] Gradient-Based Distance Estimation for Spatial Computers
    Liu, Qingzhi
    Pruteanu, Andrei
    Dulman, Stefan
    COMPUTER JOURNAL, 2013, 56 (12): : 1469 - 1499
  • [46] Gradient-based stochastic estimation of the density matrix
    Wang, Zhentao
    Chern, Gia-Wei
    Batista, Cristian D.
    Barros, Kipton
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (09):
  • [47] Optimal filters for gradient-based motion estimation
    Elad, M
    Hel-Or, Y
    Teo, P
    21ST IEEE CONVENTION OF THE ELECTRICAL AND ELECTRONIC ENGINEERS IN ISRAEL - IEEE PROCEEDINGS, 2000, : 195 - 197
  • [48] Gradient-Based Uncertainty for Monocular Depth Estimation
    Hornauer, Julia
    Belagiannis, Vasileios
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 613 - 630
  • [49] On the design of filters for gradient-based motion estimation
    Elad, M
    Teo, P
    Hel-Or, Y
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 23 (03) : 345 - 365
  • [50] Nonparametric estimation for uncertain fractional differential equations
    He, Liu
    Zhu, Yuanguo
    CHAOS SOLITONS & FRACTALS, 2024, 178