A highly accurate RBF quasi-interpolation method for approximating the derivatives

被引:0
|
作者
Zhang, Shengliang [1 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2021年 / 40卷 / 06期
关键词
Highly accurate quasi-interpolation; Radial basis functions; Approximation to derivatives; Stability; NUMERICAL-METHOD; COLLOCATION;
D O I
10.1007/s40314-021-01623-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study provides a new method for approximating the derivatives by cubic multiquadric quasi-interpolation operator. We prove that cubic multiquadric quasi-interpolation can approximate the derivative f((k)) ( x) with a high-order accuracy. Then, the stability of the method is analyzed by compared with the classical divided difference. Some numerical examples are chosen to demonstrate the accuracy and effectiveness of the proposed method.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Quasi-interpolation in the Fourier algebra
    Feichtinger, Hans G.
    Kaiblinger, Norbert
    JOURNAL OF APPROXIMATION THEORY, 2007, 144 (01) : 103 - 118
  • [22] Quasi-interpolation and outliers removal
    Amir, Anat
    Levin, David
    NUMERICAL ALGORITHMS, 2018, 78 (03) : 805 - 825
  • [23] Quasi-interpolation and outliers removal
    Anat Amir
    David Levin
    Numerical Algorithms, 2018, 78 : 805 - 825
  • [24] Quasi-interpolation in Riemannian manifolds
    Grohs, Philipp
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 849 - 874
  • [25] Approximate Hermite quasi-interpolation
    Lanzara, F.
    Maz'ya, V.
    Schmidt, G.
    APPLICABLE ANALYSIS, 2008, 87 (07) : 805 - 827
  • [26] Beyond interpolation: Optimal reconstruction by quasi-interpolation
    Condat, L
    Blu, T
    Unser, M
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 165 - 168
  • [27] A quasi-interpolation method for solving stiff ordinary differential equations
    Hon, YC
    Wu, ZM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (08) : 1187 - 1197
  • [28] Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations
    Wu, Zongmin
    Zhang, Shengliang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (7-8) : 1052 - 1058
  • [29] Multi-symplectic quasi-interpolation method for the KdV equation
    Yuyan Gao
    Zhengjie Sun
    Computational and Applied Mathematics, 2022, 41
  • [30] Multi-symplectic quasi-interpolation method for the KdV equation
    Gao, Yuyan
    Sun, Zhengjie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):