On the Number of Edges of a Uniform Hypergraph with a Range of Allowed Intersections

被引:6
|
作者
Bobu, A. V. [1 ]
Kupriyanov, A. E. [1 ]
Raigorodskii, A. M. [1 ,2 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Math Stat & Random Proc, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dept Innovat & High Technol, Moscow, Russia
[3] Buryat State Univ, Inst Math & Comp Sci, Ulan Ude, Russia
关键词
FRANKL-RODL THEOREM; CHROMATIC-NUMBERS; FORBIDDEN INTERSECTIONS; INDEPENDENCE NUMBERS; EUCLIDEAN-SPACE; UPPER-BOUNDS; FINITE SETS; GRAPHS; IMPROVEMENTS; SYSTEMS;
D O I
10.1134/S0032946017040020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the quantity p(n, k, t(1), t(2)) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t(1), t(2)]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n, k, t(1), t(2)) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.
引用
收藏
页码:319 / 342
页数:24
相关论文
共 50 条
  • [31] SETS OF INDEPENDENT EDGES OF A HYPERGRAPH
    BOLLOBAS, B
    DAYKIN, DE
    ERDOS, P
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105): : 25 - 32
  • [32] EDGES PATHS HYPERGRAPH OF A TREE
    FOURNIER, JC
    DISCRETE MATHEMATICS, 1983, 43 (01) : 29 - 36
  • [33] The Laplacian of a uniform hypergraph
    Shenglong Hu
    Liqun Qi
    Journal of Combinatorial Optimization, 2015, 29 : 331 - 366
  • [34] The Laplacian of a uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 331 - 366
  • [35] On tours that contain all edges of a hypergraph
    Lonc, Zbigniew
    Naroski, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [36] DEGREES GIVING INDEPENDENT EDGES IN A HYPERGRAPH
    DAYKIN, DE
    HAGGKVIST, R
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (01) : 103 - 109
  • [37] Covering the Edges of a Random Hypergraph by Cliques
    Rodl, Vojtech
    Rucinski, Andrzej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1333 - 1349
  • [38] The maximum spectral radius of uniform hypergraphs with given number of pendant edges
    Xiao, Peng
    Wang, Ligong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (07): : 1392 - 1403
  • [39] A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2
    Diao, KF
    Liu, GZ
    Rautenbach, D
    Zhao, P
    DISCRETE MATHEMATICS, 2006, 306 (07) : 670 - 672
  • [40] An Upper Bound to the Chromatic Number of a Uniform Hypergraph without Cycles of Length Two or Three
    Dohmen K.
    Results in Mathematics, 1999, 36 (1-2) : 55 - 56