Noncommutative biorthogonal polynomials

被引:0
|
作者
Sergel, Emily [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
Biorthogonal polynomials; Quasideterminants; Recurrence relations; ORTHOGONAL MATRIX POLYNOMIALS;
D O I
10.1016/j.aam.2011.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and study biorthogonal sequences of polynomials over noncommutative rings, generalizing previous treatments of biorthogonal polynomials over commutative rings and of orthogonal polynomials over noncommutative rings. We extend known recurrence relations for specific cases of biorthogonal polynomials and prove a general version of Favard's theorem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [21] Asymptotic of Cauchy Biorthogonal Polynomials
    U. Fidalgo
    G. Lopez Lagomasino
    S. Medina Peralta
    Mediterranean Journal of Mathematics, 2020, 17
  • [22] BIORTHOGONAL CONDITIONS FOR A CLASS OF POLYNOMIALS
    CARLITZ, L
    CHAI, WA
    SIAM REVIEW, 1973, 15 (03) : 670 - 671
  • [23] Asymptotic of Cauchy Biorthogonal Polynomials
    Fidalgo, U.
    Lopez Lagomasino, G.
    Medina Peralta, S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (01)
  • [24] Recurrence relation for biorthogonal polynomials
    Castro, G
    Seghier, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (12): : 1413 - 1418
  • [25] A SYSTEM OF BIORTHOGONAL TRIGONOMETRIC POLYNOMIALS
    Berriochoa, Elias
    Cachafeiro, Alicia
    Garcia-Amor, Jose
    DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 80 - +
  • [26] The "classical" Laurent biorthogonal polynomials
    Zhedanov, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 98 (01) : 121 - 147
  • [27] A PAIR OF BIORTHOGONAL SETS OF POLYNOMIALS
    ALSALAM, WA
    VERMA, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1983, 13 (02) : 273 - 279
  • [28] Generalized hermite and Laguerre polynomials and associated biorthogonal functions. Biorthogonal sets and generalized polynomials
    ENEA, Dipartimento Innovazione, Centro Ricerche di Frascati, C.P. 65 00044 Frascati, Rome, Italy
    RADIAT. PHYS. CHEM., 2 (133-139):
  • [29] SOME BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE-POLYNOMIALS
    SRIVASTAVA, HM
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (01) : 235 - 250
  • [30] A NOTE ON NONCOMMUTATIVE POLYNOMIALS
    CURTIS, CW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (05) : 562 - 563