Bipartite complements of circle graphs

被引:0
|
作者
Esperet, Louis [1 ]
Stehlik, Matej [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Lab G SCOP, Grenoble, France
[2] Univ Grenoble Alpes, Lab G SCOP, Grenoble, France
关键词
Circle graphs; Bipartite graphs; Complementation;
D O I
10.1016/j.disc.2020.111834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using an algebraic characterization of circle graphs, Bouchet proved in 1999 that if a bipartite graph G is the complement of a circle graph, then G is a circle graph. We give an elementary proof of this result. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] On the boxicity of Kneser graphs and complements of line graphs
    Caoduro, Marco
    Lichev, Lyuben
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [42] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [43] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262
  • [44] On the hyperbolicity of bipartite graphs and intersection graphs
    Coudert, David
    Ducoffe, Guillaume
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 187 - 195
  • [45] RENCONTRES GRAPHS - A FAMILY OF BIPARTITE GRAPHS
    DAS, SK
    DEO, N
    FIBONACCI QUARTERLY, 1987, 25 (03): : 250 - 262
  • [46] (Laplacian) Borderenergetic Graphs and Bipartite Graphs
    Deng, Bo
    Li, Xueliang
    Zhao, Haixing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 481 - 489
  • [47] PROBLEM ON BIPARTITE GRAPHS
    VANLINT, JH
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01): : 55 - 56
  • [48] LOCALLY BIPARTITE GRAPHS
    STECHKIN, BS
    MATHEMATICAL NOTES, 1988, 44 (1-2) : 601 - 605
  • [49] EMBEDDING INTO BIPARTITE GRAPHS
    Boettcher, Julia
    Heinig, Peter
    Taraz, Anusch
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1215 - 1233
  • [50] On endotype of bipartite graphs
    Li, Weimin
    ARS COMBINATORIA, 2013, 108 : 415 - 424