Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory

被引:40
|
作者
Li, Yiman [1 ]
Peng, Tian [1 ,2 ]
Zhang, Chu [1 ,2 ]
Sun, Wei [1 ]
Hua, Lei [1 ]
Ji, Chunlei [1 ]
Shahzad, Nazir Muhammad [1 ]
机构
[1] Huaiyin Inst Technol, Fac Automat, Huaian 223003, Peoples R China
[2] Huaiyin Inst Technol, Jiangsu Permanent Magnet Motor Engn Res Ctr, Huaian 223003, Peoples R China
关键词
Wind speed forecasting; Deep learning; Maximum overlap discrete wavelet; transform; Random forest; Improved grey wolf optimization; Long short-term memory; MODEL; DECOMPOSITION; PREDICTION;
D O I
10.1016/j.renene.2022.07.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate and reliable wind speed forecasting is of great significance to the management and utilization of wind energy. An improved deep learning model for wind speed forecasting, abbreviated as MODWT-RF-IGWO-LSTM, is presented in this paper. Firstly, the maximum overlap discrete wavelet transform (MODWT) is applied to denoise the original wind speed series. Secondly, the random forest (RF) algo-rithm is used for feature selection. Thirdly, the improved grey wolf optimization algorithm (IGWO) is applied to optimize the parameters of the long short-term memory (LSTM) model. Finally, the denoised wind speed data is entered into the well-trained LSTM model to obtain the final wind speed forecasting result. The performance of the proposed model is assessed by actual wind speed data for three different months of the year. The experimental results show that the proposed deep learning model for wind speed forecasting has good predictive ability. And the proposed model performs better than other benchmark models in this paper.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1115 / 1126
页数:12
相关论文
共 50 条
  • [41] Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
    Wang, Deyun
    Luo, Hongyuan
    Grunder, Olivier
    Lin, Yanbing
    RENEWABLE ENERGY, 2017, 113 : 1345 - 1358
  • [42] Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy
    Wang, Jujie
    Li, Yaning
    APPLIED ENERGY, 2018, 230 : 429 - 443
  • [43] A novel hybrid approach based on cuckoo search optimization algorithm for short-term wind speed forecasting
    Zhang, Kequan
    Qu, Zongxi
    Wang, Jianzhou
    Zhang, Wenyu
    Yang, Feiyue
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (03) : 943 - 952
  • [44] Short-term Load Forecasting Based On Variational Mode Decomposition And Chaotic Grey Wolf Optimization Improved Random Forest Algorithm
    Wang, Fan
    Chen, Chen
    Zhang, Haitao
    Ma, Youhua
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (01): : 69 - 78
  • [45] A multi-layer extreme learning machine refined by sparrow search algorithm and weighted mean filter for short-term multi-step wind speed forecasting
    Zhang, Haochen
    Peng, Zhiyun
    Tang, Junjie
    Dong, Ming
    Wang, Ke
    Li, Wenyuan
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 50
  • [46] A multi-model architecture based on Long Short-Term Memory neural networks for multi-step sea level forecasting
    Accarino, Gabriele
    Chiarelli, Marco
    Fiore, Sandro
    Federico, Ivan
    Causio, Salvatore
    Coppini, Giovanni
    Aloisio, Giovanni
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 124 : 1 - 9
  • [47] Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting
    Bento, P. M. R.
    Pombo, J. A. N.
    Calado, M. R. A.
    Mariano, S. J. P. S.
    NEUROCOMPUTING, 2019, 358 : 53 - 71
  • [48] Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network
    Wei, Liming
    Xv, Shuo
    Li, Bin
    CLEAN ENERGY, 2022, 6 (02): : 1053 - 1061
  • [49] An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events
    Cui, Yang
    Chen, Zhenghong
    He, Yingjie
    Xiong, Xiong
    Li, Fen
    ENERGY, 2023, 263
  • [50] Random forest machine learning algorithm based seasonal multi-step ahead short-term solar photovoltaic power output forecasting
    Jogunuri, Sravankumar
    Josh, F. T.
    Stonier, Albert Alexander
    Peter, Geno
    Jayaraj, Jayakumar
    Jaganathan, S.
    Joseph, Jency J.
    Ganji, Vivekananda
    IET RENEWABLE POWER GENERATION, 2024,