共 50 条
Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras
被引:3
|作者:
Bresar, M
Cabrera, M
Fosner, M
Villena, AR
机构:
[1] Univ Maribor, PEF, Dept Math, Maribor 2000, Slovenia
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[3] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词:
D O I:
10.4064/sm169-3-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M, J, J] subset of M, where [(.), (.), (.)] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U, J, J], where U is the ideal of J generated by [M, M, M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure (J) over cap, and let Phi : H -> J be a Lie triple epimorphism (i.e. a linear surjection preserving associators). Assume that deg(J) >= 12. Then we show that there exist a homomorphism Psi : H -> (J) over cap and a linear map tau : H -> C satisfying tau([H, H, H]) = 0 such that either Phi = Psi + tau or Phi = -Psi + tau. Using the preceding results we show that the separating space of a Lie triple epimorphism between Jordan-Banach algebras H and J lies in the center modulo the radical of J.
引用
收藏
页码:207 / 228
页数:22
相关论文