Platinum catalyst degradation in phosphoric acid fuel cells for stationary applications

被引:22
|
作者
Aindow, T. T. [1 ]
Haug, A. T. [1 ]
Jayne, D. [1 ]
机构
[1] UTC Power Corp, S Windsor, CT 06074 USA
关键词
PAFC; Cathode catalyst; Catalyst degradation; Electrochemical surface area; Platinum particle migration; Particle coalescence; SUPPORTED METAL-CATALYSTS; GRAPHITIZED CARBON-BLACK; SURFACE-AREA LOSS; SIZE DISTRIBUTIONS; CRYSTALLITE GROWTH; OXYGEN; RECRYSTALLIZATION; DISSOLUTION; REDUCTION; PARTICLES;
D O I
10.1016/j.jpowsour.2011.01.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A study is presented on the degradation of platinum alloy cathode catalysts operated in phosphoric acid fuel cells. The impact of time and temperature on the fundamental decay mechanism was studied with a surface area loss model and experimental electrochemical surface area measurements. It is suggested that platinum particle migration on the carbon support surface is the dominant mechanism for surface area change in these catalysts. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4506 / 4514
页数:9
相关论文
共 50 条
  • [31] Physical Modeling of Catalyst Degradation in Low Temperature Fuel Cells: Platinum Oxidation, Dissolution, Particle Growth and Platinum Band Formation
    Jahnke, Thomas
    Futter, Georg A.
    Baricci, Andrea
    Rabissi, Claudio
    Casalegno, Andrea
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
  • [32] Effect of particle size on the electrocatalytic activity of platinum dispersions in carbon matrix electrodes for phosphoric acid fuel cells
    Lee, SB
    Pyun, SI
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) : 795 - 801
  • [33] Effect of particle size on the electrocatalytic activity of platinum dispersions in carbon matrix electrodes for phosphoric acid fuel cells
    S.-B. Lee
    S.-I. Pyun
    Journal of Applied Electrochemistry, 2000, 30 : 795 - 801
  • [34] Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells
    Xu, J. B.
    Zhao, T. S.
    Liang, Z. X.
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 857 - 861
  • [35] Colorimetric determination of phosphoric acid leakage for phosphoric acid-doped polybenzimidazole membrane fuel cell applications
    Jeong, Yeon Hun
    Jung, Ju Hae
    Choi, Euiji
    Han, Seungyoon
    Begley, Alina Irene
    Yoo, Sung Jong
    Jang, Jong Hyun
    Kim, Hyoung-Jtihn
    Nam, Suk Woo
    Lee, Kwan-Young
    Kim, Jin Young
    JOURNAL OF POWER SOURCES, 2015, 299 : 480 - 484
  • [36] Electrodeposition of platinum and cerium oxide by chronoamperommetry and applications in fuel cells in acid solution.
    Campos, CL
    Laboy, GL
    Aponte, M
    Cabrera, CR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U643 - U643
  • [37] Changes in cathode catalyst structure and activity in phosphoric acid fuel cell operation
    Maoka, T
    Kitai, T
    Segawa, N
    Ueno, M
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1996, 26 (12) : 1267 - 1272
  • [38] ELECTROCATALYST UTILIZATION IN PHOSPHORIC-ACID FUEL-CELLS
    FULLER, TF
    LUCZAK, FJ
    WHEELER, DJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) : 1752 - 1757
  • [39] Using phosphoric-acid fuel cells for distributed generation
    Carlson, Eric
    Zogg, Robert
    Sriramulu, Suresh
    Roth, Kurt
    Brodrick, James
    ASHRAE JOURNAL, 2007, 49 (01) : 50 - 51
  • [40] Using phosphoric-acid fuel cells for distributed generation
    TIAX LLC, Cambridge, MA, United States
    不详
    ASHRAE J, 2007, 1 (50-51):