Five families of the narrow-sense primitive BCH codes over finite fields

被引:7
|
作者
Pang, Binbin [1 ,2 ]
Zhu, Shixin [1 ,2 ]
Kai, Xiaoshan [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Intelligent Interconnected Syst Lab Anhui Prov, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Narrow-sense primitive BCH code; Bose distance; Cyclotomic coset; MINIMUM DISTANCE; WEIGHT; BOSE;
D O I
10.1007/s10623-021-00942-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is an interesting problem to determine the parameters of BCH codes, due to their wide applications. In this paper, we determine the dimension and the Bose distance of five families of the narrow-sense primitive BCH codes with the following designed distances: 1. delta((a,b)) = aq(m)-1/q-1 + bq(m)-1/q2-1, where is even, 0 <= a <= q - 1, 1 <= b <= q - 1, 1 <= a + b <= q - 1 (2). (delta) over tilde ((a,b)) = aq(m-1) + (a + b)q(m-2) - 1, where is even, 0 <= a <= q-1, 1 <= b <= q-1, 1 <= a+b <= q-1. 3. delta((a,c)) = aq(m)-1/q-1 + cq(m-1)-1/q-1, where m >= 2, 0 <= a <= q-1, 1 <= c <= q-1, 1 <= a + c <= q-1. 4. delta((a,t))'=aq(m)-1/q-1 + q(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-2, a + 2 <= t <= q-1. 5. delta((a,c,t))''=aq(m)-1/q-1 + cq(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-3, 2 <= c <= q-, 1 <= a+c <= q-1, 1 <= t <= c-1. Moreover, we obtain the exact parameters of two subfamilies of BCH codes with designed distances (delta) over bar = bq(m)-1/q(2)-1 and delta(a,t)=(at+1)qm-1t(q-1) with even m, 1 <= a <= [q-2/t], 1 <= b <= q - 1, t>1 and t vertical bar(q +1). Note that we get the narrow-sense primitive BCH codes with flexible designed distance as to a, b, c, t. Finally, we obtain a lot of the optimal or the best narrow-sense primitive BCH codes.
引用
收藏
页码:2679 / 2696
页数:18
相关论文
共 50 条
  • [31] Asymmetric Quantum Codes and Quantum Convolutional Codes Derived from Nonprimitive Non-Narrow-Sense BCH Codes
    Chen, Jianzhang
    Li, Jianping
    Huang, Yuanyuan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (05) : 1130 - 1135
  • [32] Construction and decoding of BCH Codes over finite commutative rings
    de, Andrade, Antonio Aparecido
    Palazzo, Reginaldo Jr.
    Linear Algebra and Its Applications, 1999, 286 : 69 - 85
  • [33] Construction and decoding of BCH Codes over finite commutative rings
    de Andrade, AA
    Palazzo, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 286 (1-3) : 69 - 85
  • [34] Toric Codes over Finite Fields
    David Joyner
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 63 - 79
  • [35] Constacyclic codes over finite fields
    Chen, Bocong
    Fan, Yun
    Lin, Liren
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1217 - 1231
  • [36] On constacyclic codes over finite fields
    Anuradha Sharma
    Saroj Rani
    Cryptography and Communications, 2016, 8 : 617 - 636
  • [37] Toric codes over finite fields
    Joyner, D
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (01) : 63 - 79
  • [38] On constacyclic codes over finite fields
    Sharma, Anuradha
    Rani, Saroj
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (04): : 617 - 636
  • [39] Curves over finite fields and codes
    van der Geer, G
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 225 - 238
  • [40] LCD codes over finite fields
    Zoubir, N.
    Guenda, Kenza
    Seneviratne, Padmapani
    Aaron Gulliver, T.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,