A Novel Nonlinear Time Series Forecasting of Time-Delay Neural Network

被引:0
|
作者
Jiang Weijin [1 ]
Xu Yuhui [1 ]
Cao Dongpo [1 ]
Luo Fei [1 ]
机构
[1] Hunan Univ Commerce, Sch Comp & Elect, Changsha, Hunan, Peoples R China
关键词
PREDICTION;
D O I
10.1109/GRC.2009.5255115
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the imp&exp trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably 'catch' the dynamic characteristic of the nonlinear system which produced the origin serial.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条