Ligands Anchoring Stabilizes Metal Halide Perovskite Nanocrystals

被引:7
|
作者
Gong, Maogang [1 ]
Timalsina, Bikash [2 ]
Sakidja, Ridwan [2 ]
Douglas, Justin T. [3 ]
Wu, Judy Z. [1 ]
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Springfield, Dept Phys Astron & Mat Sci Missouri State, Lawrence, MO 65897 USA
[3] Univ Kansas, Mol Struct Grp, Lawrence, KS 66045 USA
来源
ADVANCED OPTICAL MATERIALS | 2021年 / 9卷 / 22期
关键词
cesium lead halide perovskite; ligand anchoring; nanocrystals; photodetector; stability; LIGHT-EMITTING-DIODES; HIGHLY LUMINESCENT; ULTRASENSITIVE DETECTION; CSPBI3; NANOCRYSTALS; QUANTUM DOTS; EFFICIENT; PHASE; OPPORTUNITIES; GROWTH; BR;
D O I
10.1002/adom.202101012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Instability of colloidal iodine-based inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals (IPNCs) represents a major obstacle in lead-halide IPNC research and application. Herein, a ligand-anchoring process is reported that enables significantly improved colloidal stability of the iodine-based IPNCs for over 10 months in ambient. Apart from the previous efforts in searching for strong binding ligands to cap the IPNCs to incrementally reduce the exposure of the IPNC surface to the harsh colloidal environment, the ligand-anchoring method demonstrates that such an exposure can be reduced substantially by suppressing the dynamic ligand exchange around the colloidal IPNCs. In the IPNC synthesis solution with common oleic acid (OA) and oleylamine (OLA) ligands with relative weak binding to IPNCs, a systematic reduction of the ligand concentration using hexane by an order of magnitude has shown to be effective in achieving OA/OLA ligand-anchored iodine-based IPNCs with superior stability as confirmed in optical absorption, photoluminescence, H-1 solution nuclear magnetic resonance spectroscopy, and photoresponse. This result has revealed that the intermittent exposure of the IPNC surface during the dynamic ligand exchange is a primary mechanism underlying the colloidal IPNC instability, which can be resolved in the ligand-anchoring process by suppressing such dynamic activities.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Ligands Mediate Anion Exchange between Colloidal Lead-Halide Perovskite Nanocrystals
    Scharf, Einav
    Krieg, Franziska
    Elimelech, Orian
    Oded, Meirav
    Levi, Adar
    Dirin, Dmitry N.
    Kovalenko, Maksym, V
    Banin, Uri
    NANO LETTERS, 2022, 22 (11) : 4340 - 4346
  • [42] Halide perovskite nanocrystals for multiphoton applications
    He, Huajun
    Sum, Tze Chien
    DALTON TRANSACTIONS, 2020, 49 (43) : 15149 - 15160
  • [43] Postsynthesis Transformation of Halide Perovskite Nanocrystals
    Paul, Susmita
    Acharya, Somobrata
    ACS ENERGY LETTERS, 2022, 7 (06) : 2136 - 2155
  • [44] Biexciton dynamics in halide perovskite nanocrystals
    Yumoto, Go
    Kanemitsu, Yoshihiko
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (37) : 22405 - 22425
  • [45] Photolysis of Mixed Halide Perovskite Nanocrystals
    Brennan, Michael C.
    Veghte, Daniel P.
    Ford, Brittany R.
    McCleese, Christopher L.
    Loftus, Lauren M.
    McComb, David W.
    Song, Zhaoning
    Heben, Michael J.
    Grusenmeyer, Tod A.
    ACS ENERGY LETTERS, 2023, 8 (05) : 2150 - 2158
  • [46] Chemical Aspects of Halide Perovskite Nanocrystals
    Roy, Mrinmoy
    Sykora, Milan
    Aslam, M.
    TOPICS IN CURRENT CHEMISTRY, 2024, 382 (01)
  • [47] Chemical Aspects of Halide Perovskite Nanocrystals
    Mrinmoy Roy
    Milan Sykora
    M. Aslam
    Topics in Current Chemistry, 2024, 382
  • [48] Advances in the Stability of Halide Perovskite Nanocrystals
    Liu, Maning
    Matuhina, Anastasia
    Zhang, Haichang
    Vivo, Paola
    MATERIALS, 2019, 12 (22)
  • [49] Exploiting the Photo-Physical Properties of Metal Halide Perovskite Nanocrystals for Bioimaging
    Zhang, Jiahui
    Zhu, Yifan
    CHEMBIOCHEM, 2024, 25 (05)
  • [50] Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals
    Yong Xu
    Muhan Cao
    Shaoming Huang
    Nano Research, 2021, 14 : 3773 - 3794