Existence of a spanning tree having small diameter

被引:0
|
作者
Egawa, Yoshimi [1 ]
Furuya, Michitaka [2 ]
Matsumura, Hajime [3 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[2] Kitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
[3] Ibaraki Univ, Coll Educ, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan
关键词
Diameter; Minimum diameter spanning tree; Minimum degree; RADIUS;
D O I
10.1016/j.disc.2021.112548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that for a sufficiently large integer d and a connected graph G, if vertical bar V (G)vertical bar < (d+2)(delta(G)+1)/3, then there exists a spanning tree T of G such that diam(T) <= d. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Tree decompositions of small diameter
    Bodlaender, HL
    Hagerup, T
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 702 - 712
  • [22] A hybrid heuristic for the diameter constrained minimum spanning tree problem
    Abilio Lucena
    Celso C. Ribeiro
    Andréa C. Santos
    Journal of Global Optimization, 2010, 46 : 363 - 381
  • [23] Facility location and the geometric minimum-diameter spanning tree
    Gudmundsson, J
    Haverkort, H
    Park, SM
    Shin, CS
    Wolff, A
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 27 (01): : 87 - 106
  • [24] Finding bounded diameter minimum spanning tree in general graphs
    Segal, Michael
    Tzfaty, Oren
    COMPUTERS & OPERATIONS RESEARCH, 2022, 144
  • [25] Computing a diameter-constrained minimum spanning tree in parallel
    Deo, N
    Abdalla, A
    ALGORITHMS AND COMPLEXITY, 2000, 1767 : 17 - 31
  • [26] Geometric Minimum Diameter Minimum Cost Spanning Tree Problem
    Seo, Dae Young
    Lee, D. T.
    Lin, Tien-Ching
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 283 - +
  • [27] The two-level diameter constrained spanning tree problem
    Luis Gouveia
    Markus Leitner
    Ivana Ljubić
    Mathematical Programming, 2015, 150 : 49 - 78
  • [28] A polyhedral study of the diameter constrained minimum spanning tree problem
    Gouveia, Luis
    Leitner, Markus
    Ljubic, Ivana
    DISCRETE APPLIED MATHEMATICS, 2020, 285 (285) : 364 - 379
  • [29] Computing a diameter-constrained minimum spanning tree in parallel
    Deo, Narsingh
    Abdalla, Ayman
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2000, 1767 : 17 - 31
  • [30] A hybrid heuristic for the diameter constrained minimum spanning tree problem
    Lucena, Abilio
    Ribeiro, Celso C.
    Santos, Andrea C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) : 363 - 381