Existence of a spanning tree having small diameter

被引:0
|
作者
Egawa, Yoshimi [1 ]
Furuya, Michitaka [2 ]
Matsumura, Hajime [3 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
[2] Kitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
[3] Ibaraki Univ, Coll Educ, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan
关键词
Diameter; Minimum diameter spanning tree; Minimum degree; RADIUS;
D O I
10.1016/j.disc.2021.112548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that for a sufficiently large integer d and a connected graph G, if vertical bar V (G)vertical bar < (d+2)(delta(G)+1)/3, then there exists a spanning tree T of G such that diam(T) <= d. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees
    Yoshimi Egawa
    Kenta Ozeki
    Combinatorica, 2014, 34 : 47 - 60
  • [2] A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees
    Egawa, Yoshimi
    Ozeki, Kenta
    COMBINATORICA, 2014, 34 (01) : 47 - 60
  • [3] Forbidden subgraphs and the existence of a spanning tree without small degree stems
    Furuya, Michitaka
    Tsuchiya, Shoichi
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2206 - 2212
  • [4] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111
  • [5] Refinements of degree conditions for the existence of a spanning tree without small degree stems
    Furuya, Michitaka
    Saito, Akira
    Tsuchiya, Shoichi
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [6] On maximizing tree reliability based on minimum diameter spanning tree
    Ishigaki, Genya
    Yoshida, Masao
    Shinomiya, Norihiko
    2014 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2014, : 603 - 606
  • [7] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Chih-Hung Liu
    Sandro Montanari
    Algorithmica, 2018, 80 : 801 - 826
  • [8] The diameter of the uniform spanning tree of dense graphs
    Alon, Noga
    Nachmias, Asaf
    Shalev, Matan
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (06): : 1010 - 1030
  • [9] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Liu, Chih-Hung
    Montanari, Sandro
    ALGORITHMICA, 2018, 80 (02) : 801 - 826
  • [10] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Liu, Chih-Hung
    Montanari, Sandro
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 381 - 392