A Multi-strategy Region Proposal Network

被引:8
|
作者
Chen, Yu-Peng [1 ,2 ]
Li, Ying [1 ,2 ]
Wang, Gang [1 ,2 ]
Xu, Qian [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Region proposal generation; Convolutional neural network; Classification;
D O I
10.1016/j.eswa.2018.06.043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Faster Region-based Convolutional Network (Faster R-CNN) was recently proposed achieving outstanding performance for object detection. Specially, a Region Proposal Network (RPN) is designed to efficiently predict region proposals with a wide range of scales and aspect ratios in Faster R-CNN. Nevertheless, once the number and quality of region proposals generated by RPN are not ideal the object detection performance of Faster R-CNN is affected. In this paper, multiple strategies are applied to address these limitations and improve RPN. Hence, a novel architecture for region proposal generation is presented which is named as Multi-strategy Region Proposal Network (MSRPN). Four improvements are presented in MSRPN. Firstly, a novel skip-layer connection network is designed for combining multi-level features and boosting the ability of pooling layers. Thereupon, the quality of region proposals is strengthened. Secondly, improved anchor boxes are introduced with adaptive aspect ratio and evenly distributed interval of selected scales. In this way, the number of predicted region proposals for detection is seriously reduced and the efficiency of object localization is increased. Particularly, the capability of small object detection is enhanced by applying the first and second improvements. Thirdly, classification layer and regression layer are unified as a single convolutional layer. Furthermore, the model complexity of output layer is reduced. Thus, the speed of training and testing is accelerated. Fourthly, the bounding box regression part of multi-task loss function in RPN is improved. Consequently, the performance of bounding box regression is promoted. In the experiment, MSRPN is compared with the Fast Region-based Convolutional Network (Fast R-CNN), Faster R-CNN, Inside-Outside Net (ION), Multi-region CNN (MR-CNN) and HyperNet approaches. MSRPN achieves the state-of-the-art mean average precision (mAP) of 78.9%, 74.8% and 32.1% on PASCAL VOC 2007, 2012 and MS COCO data sets with the deep VGG-16 model, surpassing other five object detection methods. Simultaneously, the above experiment results are obtained by MSRPN with only 150 region proposals per image. Additionally, MSRPN gets excellent performance on small object detection. Furthermore, MSRPN runs at 6 fps which is faster than other methods. In conclusion, the MSRPN method can provide important support for the intelligent object detection systems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network
    Farhad Soleimanian Gharehchopogh
    Journal of Bionic Engineering, 2023, 20 : 1175 - 1197
  • [22] MULTI-STREAM REGION PROPOSAL NETWORK FOR PEDESTRIAN DETECTION
    Lei, Jianjun
    Chen, Yue
    Peng, Bo
    Huang, Qingming
    Ling, Nam
    Hou, Chunping
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [23] Study of a multi-strategy controller on a helium liquefier
    Lei, L. L.
    Meng, Y. R.
    Peng, N.
    Xiong, L. Y.
    Tang, J. C.
    Dong, B.
    Liu, L. Q.
    26TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE & INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2016, 2017, 171
  • [24] A Multi-strategy Learning Approach to Competitor Identification
    Ruan, Tong
    Lin, Yeli
    Wang, Haofen
    Pan, Jeff Z.
    SEMANTIC TECHNOLOGY (JIST 2014), 2015, 8943 : 197 - 212
  • [25] A Multi-strategy Improved Fireworks Optimization Algorithm
    Zou, Pengcheng
    Huang, Huajuan
    Wei, Xiuxi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 97 - 111
  • [26] Multi-strategy synthetized equilibrium optimizer and application
    Sun, Quandang
    Zhang, Xinyu
    Jin, Ruixia
    Zhang, Xinming
    Ma, Yuanyuan
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] Use of multi-strategy to Textual Entailment recognition
    Du, Yongping
    He, Ming
    Journal of Computational Information Systems, 2011, 7 (07): : 2403 - 2411
  • [28] Multi-strategy Improved Kepler Optimization Algorithm
    Ma, Haohao
    Liao, Yuxin
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 296 - 308
  • [29] Multi-strategy Improved Seagull Optimization Algorithm
    Li, Yancang
    Li, Weizhi
    Yuan, Qiuyu
    Shi, Huawang
    Han, Muxuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [30] Particle swarm optimisation with multi-strategy learning
    Lin G.
    Sun J.
    International Journal of Wireless and Mobile Computing, 2020, 18 (01) : 22 - 30