EEG Classification with BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural Network

被引:0
|
作者
Nuntalid, Nuttapod [1 ]
Dhoble, Kshitij [1 ]
Kasabov, Nikola [1 ,2 ,3 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Private Bag 92006, Auckland 1010, New Zealand
[2] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
[3] Univ Zurich, ETH Zurich, Zurich, Switzerland
来源
关键词
Spatio-Temporal Patterns; Electroencephalograms (EEG); Stochastic neuron models; evolving probabilistic spiking neural networks; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study investigates the feasibility of Bens Spike Algorithm (BSA) to encode continuous EEG spatio-temporal data into input spike streams for a classification in a spiking neural network classifier. A novel evolving probabilistic spiking neural network reservoir (epSNNr) architecture is used for the purpose of learning and classifying the EEG signals after the BSA transformation. Experiments are conducted with EEG data measuring a cognitive state of a single individual under 4 different stimuli. A comparison is drawn between using traditional machine learning algorithms and using BSA plus epSNNr, when different probabilistic models of neurons are utilised. The comparison demonstrates that: (1) The BSA is a suitable transformation for EEG data into spike trains; (2) The performance of the epSNNr improves when a probabilistic model of a neuron is used, compared to the use of a deterministic LIF model of a neuron; (3) The classification accuracy of the EEG data in an epSNNr depends on the type of the probabilistic neuronal model used. The results suggest that an epSNNr can be optimised in terms of neuronal models used and parameters that would better match the noise and the dynamics of EEG data. Potential applications of the proposed method for BCI and medical studies are briefly discussed.
引用
收藏
页码:451 / +
页数:3
相关论文
共 50 条
  • [21] Neural encoding with unsupervised spiking convolutional neural network
    Chong Wang
    Hongmei Yan
    Wei Huang
    Wei Sheng
    Yuting Wang
    Yun-Shuang Fan
    Tao Liu
    Ting Zou
    Rong Li
    Huafu Chen
    Communications Biology, 6
  • [22] Neural encoding with unsupervised spiking convolutional neural network
    Wang, Chong
    Yan, Hongmei
    Huang, Wei
    Sheng, Wei
    Wang, Yuting
    Fan, Yun-Shuang
    Liu, Tao
    Zou, Ting
    Li, Rong
    Chen, Huafu
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [23] FPGA Implementation of an Evolving Spiking Neural Network
    Zuppicich, Alan
    Soltic, Snjezana
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 1129 - 1136
  • [24] Evolving spiking neural network-a survey
    Schliebs S.
    Kasabov N.
    Schliebs, S. (sschlieb@aut.ac.nz), 1600, Springer Verlag (04): : 87 - 98
  • [25] Neural Network Evolving Algorithm Based on the Triplet Codon Encoding Method
    Yang, Xu
    Deng, Songgaojun
    Ji, Mengyao
    Zhao, Jinfeng
    Zheng, Wenhao
    GENES, 2018, 9 (12)
  • [26] Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models
    Schliebs, Stefan
    Defoin-Platel, Michael
    Worner, Sue
    Kasabov, Nikola
    NEURAL NETWORKS, 2009, 22 (5-6) : 623 - 632
  • [27] An Extended Evolving Spiking Neural Network Model for Spatio-Temporal Pattern Classification
    Hamed, Haza Nuzly Abdull
    Kasabov, Nikola
    Shamsuddin, Siti Mariyam
    Widiputra, Harya
    Dhoble, Kshitij
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2653 - 2656
  • [28] EVOLVING SPIKING NEURAL NETWORK TOPOLOGIES FOR BREAST CANCER CLASSIFICATION IN A DIELECTRICALLY HETEROGENEOUS BREAST
    O'Halloran, M.
    Cawley, S.
    McGinley, B.
    Conceicao, R. C.
    Morgan, F.
    Jones, E.
    Glavin, M.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2011, 25 : 153 - 162
  • [29] Classification of Epileptiform and Wicket Spike of EEG Pattern Using Backpropagation Neural Network
    Puspita, Juni Wijayanti
    Jaya, Agus Indra
    Gunadharma, Suryani
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2016), 2017, 1825
  • [30] Spike train decoding scheme for a spiking neural network
    Amin, H
    Fujii, R
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 477 - 482