Optimal fault detection with nuisance parameters and a general covariance matrix

被引:8
|
作者
Fouladirad, M. [1 ]
Freitag, L. [1 ]
Nikiforov, I. [1 ]
机构
[1] Univ Technol Troyes, ICD, CNRS, FRE 2848, F-10010 Troyes, France
关键词
statistical hypotheses testing; invariance; parity space; linear systems; GNSS navigation;
D O I
10.1002/acs.976
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal fault detection is addressed within a statistical framework. A linear model with nuisance parameters and a general covariance matrix (not necessarily diagonal) is considered. It is supposed that the nuisance parameters are unknown but non-random; practically, this means that the nuisance can be intentionally chosen to maximize its negative impact on the monitored system (for instance, to mask a fault). Two different invariant tests can be designed in such a case. It is shown that these methods are equivalent. An example of the ground-based Global Navigation Satellite System (GNSS) integrity monitoring in the case of an arbitrary diagonal covariance matrix of the pseudorange errors illustrates the relevance of the proposed approaches. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:431 / 439
页数:9
相关论文
共 50 条
  • [21] Evaluation of the Covariance Matrix of Estimated Resonance Parameters
    Becker, B.
    Capote, R.
    Kopecky, S.
    Massimi, C.
    Schillebeeckx, P.
    Sirakov, I.
    Volev, K.
    NUCLEAR DATA SHEETS, 2014, 118 : 381 - 383
  • [22] Conditioning to reduce the sensitivity of general estimating functions to nuisance parameters
    Hanfelt, JJ
    BIOMETRIKA, 2003, 90 (03) : 517 - 531
  • [23] Enhancing Fault Detection with Clustering and Covariance Analysis
    Gallup, Ethan
    Quah, Titus
    Machalek, Derek
    Powell, Kody M.
    IFAC PAPERSONLINE, 2022, 55 (02): : 258 - 263
  • [24] STATISTICAL DETECTION OF LSB MATCHING IN THE PRESENCE OF NUISANCE PARAMETERS
    Cogranne, Remi
    Zitzmann, Cathel
    Retraint, Florent
    Nikiforov, Igor
    Fillatre, Lionel
    Cornu, Philippe
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 912 - 915
  • [25] LOW COMPLEXITY ITERATIVE DETECTION IN THE PRESENCE OF NUISANCE PARAMETERS
    Oguz, Onur
    Vandendorpe, Luc
    Herzet, Cedric
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3194 - 3197
  • [26] OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2012, 40 (05): : 2389 - 2420
  • [27] On some tests of the covariance matrix under general conditions
    Gupta, AK
    Xu, J
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (01) : 101 - 114
  • [28] Quantifying the information lost in optimal covariance matrix cleaning
    Bongiorno, Christian
    Lamrani, Lamia
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 657
  • [29] On Some Tests of the Covariance Matrix Under General Conditions
    Arjun K. Gupta
    Jin Xu
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 101 - 114
  • [30] ASYMPTOTICALLY OPTIMAL QUICKEST CHANGE DETECTION UNDER A NUISANCE CHANGE
    Lau, Tze Siang
    Tay, Wee Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5307 - 5311