Pan-cancer classification by regularized multi-task learning

被引:6
|
作者
Hossain, Sk Md Mosaddek [1 ]
Khatun, Lutfunnesa [2 ]
Ray, Sumanta [1 ]
Mukhopadhyay, Anirban [2 ]
机构
[1] Aliah Univ, Comp Sci & Engn, Kolkata 700160, India
[2] Univ Kalyani, Comp Sci & Engn, Kalyani 741235, W Bengal, India
关键词
INFORMATION; PROGNOSIS; MODEL;
D O I
10.1038/s41598-021-03554-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classifying pan-cancer samples using gene expression patterns is a crucial challenge for the accurate diagnosis and treatment of cancer patients. Machine learning algorithms have been considered proven tools to perform downstream analysis and capture the deviations in gene expression patterns across diversified diseases. In our present work, we have developed PC-RMTL, a pan-cancer classification model using regularized multi-task learning (RMTL) for classifying 21 cancer types and adjacent normal samples using RNASeq data obtained from TCGA. PC-RMTL is observed to outperform when compared with five state-of-the-art classification algorithms, viz. SVM with the linear kernel (SVM-Lin), SVM with radial basis function kernel (SVM-RBF), random forest (RF), k-nearest neighbours (kNN), and decision trees (DT). The PC-RMTL achieves 96.07% accuracy and 95.80% MCC score for a completely unknown independent test set. The only method that appears as the real competitor is SVM-Lin, which nearly equalizes the accuracy in prediction of PC-RMTL but only when complete feature sets are provided for training; otherwise, PC-RMTL outperformed all other classification models. To the best of our knowledge, this is a significant improvement over all the existing works in pan-cancer classification as they have failed to classify many cancer types from one another reliably. We have also compared gene expression patterns of the top discriminating genes across the cancers and performed their functional enrichment analysis that uncovers several interesting facts in distinguishing pan-cancer samples.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Survey on multi-task learning for object classification and recognition
    Li H.
    Wang F.
    Ding W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (01):
  • [32] Guided Learning: A New Paradigm for Multi-task Classification
    Fu, Jingru
    Zhang, Lei
    Zhang, Bob
    Jia, Wei
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 239 - 246
  • [33] Multi-task Learning for One-class Classification
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [34] A multi-task learning network for skin disease classification
    Wang, W.
    Wang, Y.
    Zhao, S.
    Chen, X.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : S52 - S52
  • [35] Multi-task learning for classification with Dirichlet process priors
    Xue, Ya
    Liao, Xuejun
    Carin, Lawrence
    Krishnapuram, Balaji
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 35 - 63
  • [36] Occlusion enhanced pan-cancer classification via deep learning
    Zhao, Xing
    Chen, Zigui
    Wang, Huating
    Sun, Hao
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [37] Dataset for modulation classification and signal type classification for multi-task and single task learning
    Jagannath, Anu
    Jagannath, Jithin
    COMPUTER NETWORKS, 2021, 199
  • [38] Regularized uncertainty-based multi-task learning model for food analysis
    Aguilar, Eduardo
    Bolanos, Marc
    Radeva, Petia
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 360 - 370
  • [39] Multi-modal microblog classification via multi-task learning
    Sicheng Zhao
    Hongxun Yao
    Sendong Zhao
    Xuesong Jiang
    Xiaolei Jiang
    Multimedia Tools and Applications, 2016, 75 : 8921 - 8938
  • [40] Dermoscopic attributes classification using deep learning and multi-task learning
    Saitov, Irek
    Polevaya, Tatyana
    Filchenkov, Andrey
    9TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE, YSC2020, 2020, 178 : 328 - 336