High efficiency upconversion nanophosphors for high-contrast bioimaging

被引:30
|
作者
Alkahtani, Masfer H. [1 ,2 ,3 ]
Alghannam, Fahad S. [1 ,2 ,3 ]
Sanchez, Carlos [4 ]
Gomes, Carmen L. [5 ]
Liang, Hong [4 ,6 ]
Hemmer, Philip R. [2 ,3 ,7 ]
机构
[1] KACST, Natl Ctr Appl Phys, POB 6086, Riyadh 11442, Saudi Arabia
[2] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[6] Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA
[7] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家卫生研究院;
关键词
upconversion nanoparticles; infrared; imaging; lanthanide luminescence; QUANTUM DOTS; LUMINESCENCE; NANOPARTICLES; NANOCRYSTALS; CELLS; NIR;
D O I
10.1088/0957-4484/27/48/485501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er+3, Yb+3 nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm(-2) excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er+3, Yb+3 nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-tonoise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High-Contrast Interference of Ultracold Fermions
    Preiss, Philipp M.
    Becher, Jan Hendrik
    Klemt, Ralf
    Klinkhamer, Vincent
    Bergschneider, Andrea
    Defenu, Nicolo
    Jochim, Selim
    PHYSICAL REVIEW LETTERS, 2019, 122 (14)
  • [32] Pedestal High-Contrast Gratings for Biosensing
    Beliaev, Leonid Yu.
    Stounbjerg, Peter Groth
    Finco, Giovanni
    Bunea, Ada-Ioana
    Malureanu, Radu
    Lindvold, Lars Rene
    Takayama, Osamu
    Andersen, Peter E.
    Lavrinenko, Andrei V.
    NANOMATERIALS, 2022, 12 (10)
  • [33] HOMOGENIZATION OF HIGH-CONTRAST DIELECTRICELASTOMER COMPOSITES
    Dang, Thuyen
    Gorb, Yuliya
    Bolanos, Silvia jimenez
    MULTISCALE MODELING & SIMULATION, 2025, 23 (01): : 668 - 685
  • [34] High-contrast Kerr frequency combs
    Grudinin, Ivan S.
    Huet, Vincent
    Yu, Nan
    Matsko, Andrey B.
    Gorodetsky, Michael L.
    Maleki, Lute
    OPTICA, 2017, 4 (04): : 434 - 437
  • [35] Stochastic homogenisation of high-contrast media
    Cherdantsev, Mikhail
    Cherednichenko, Kirill
    Velcic, Igor
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 91 - 117
  • [36] HOMOGENIZATION OF DISCRETE HIGH-CONTRAST ENERGIES
    Braides, Andrea
    Piat, Valeria Chiado
    Piatnitski, Andrey
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) : 3064 - 3091
  • [37] High-contrast planar photonic crystals
    März, R
    Burger, S
    Forchel, A
    Heidrich, H
    Hess, O
    Michaelis, D
    Wandel, K
    Wehrspohn, R
    NANOPHOTONICS FOR COMMUNICATION: MATERIALS AND DEVICES, 2004, 5597 : 68 - +
  • [38] HOMOGENIZATION OF HIGH-CONTRAST BRINKMAN FLOWS
    Brown, Donald L.
    Efendiev, Yalchin
    Li, Guanglian
    Savatorova, Viktoria
    MULTISCALE MODELING & SIMULATION, 2015, 13 (02): : 472 - 490
  • [39] Measurements of High-Contrast Starshade Performance
    Glassman, Tiffany
    Casement, Suzanne
    Warwick, Steve
    Novicki, Megan
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2014, 9143
  • [40] Spiderweb masks for high-contrast imaging
    Vanderbei, RJ
    Spergel, DN
    Kasdin, NJ
    ASTROPHYSICAL JOURNAL, 2003, 590 (01): : 593 - 603