Random increasing k-trees represent an interesting and useful class of strongly dependent graphs that have been studied widely, including being used recently as models for complex networks. In this paper we study an informative notion called BFS-profile and derive, by several analytic means, asymptotic estimates for its expected value, together with the limiting distribution in certain cases; some interesting consequences predicting more precisely the shapes of random k-trees are also given. Our methods of proof rely essentially on a bijection between k-trees and ordinary trees, the resolution of linear systems, and a specially framed notion called Flajolet-Odlyzko admissibility.
机构:
Hubei Inst Technol, Fac Math & Phys, Huangshi 435003, Peoples R China
Cent China Normal Univ, Fac Math & Phys, Wuhan 430079, Peoples R ChinaHubei Inst Technol, Fac Math & Phys, Huangshi 435003, Peoples R China
Zhang, Minjie
Li, Shuchao
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Fac Math & Phys, Wuhan 430079, Peoples R ChinaHubei Inst Technol, Fac Math & Phys, Huangshi 435003, Peoples R China