Angle Distance-Based Hierarchical Background Separation Method for Hyperspectral Imagery Target Detection

被引:9
|
作者
Hao, Xiaohui [1 ]
Wu, Yiquan [1 ]
Wang, Peng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
基金
中国博士后科学基金;
关键词
angle distance; whitened space; hierarchical structure; HSI target detection; background separation; SPARSE REPRESENTATION; DETECTION ALGORITHMS; MATCHED-FILTER; CLASSIFICATION;
D O I
10.3390/rs12040697
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional detectors for hyperspectral imagery (HSI) target detection (TD) output the result after processing the HSI only once. However, using the prior target information only once is not sufficient, as it causes the inaccuracy of target extraction or the unclean separation of the background. In this paper, the target pixels are located by a hierarchical background separation method, which explores the relationship between the target and the background for making better use of the prior target information more than one time. In each layer, there is an angle distance (AD) between each pixel spectrum in HSI and the given prior target spectrum. The AD between the prior target spectrum and candidate target ones is smaller than that of the background pixels. The AD metric is utilized to adjust the values of pixels in each layer to gradually increase the separability of the background and the target. For making better discrimination, the AD is calculated through the whitened data rather than the original data. Besides, an elegant and ingenious smoothing processing operation is employed to mitigate the influence of spectral variability, which is beneficial for the detection accuracy. The experimental results of three real hyperspectral images show that the proposed method outperforms other classical and recently proposed HSI target detection algorithms.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Research advance on target detection for hyperspectral imagery
    College of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
    不详
    不详
    Tien Tzu Hsueh Pao, 2009, 9 (2016-2024): : 2016 - 2024
  • [42] Algorithms for point target detection in hyperspectral imagery
    Caefer, CE
    Rotman, SR
    Silverman, J
    Yip, PW
    IMAGING SPECTROMETRY VIII, 2002, 4816 : 242 - 257
  • [43] Principle of small target detection for hyperspectral imagery
    Geng XiuRui
    Zhao YongChao
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (08): : 1225 - 1231
  • [44] Sparse Subspace Target Detection for Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [45] Constrained subpixel target detection for hyperspectral imagery
    Chang, CI
    Heinz, DC
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2000, 2000, 4048 : 35 - 45
  • [46] Sparse representation based on stacked kernel for target detection in hyperspectral imagery
    Zhao, Chunhui
    Li, Wei
    Li, Xiaohui
    Qi, Bin
    OPTIK, 2015, 126 (24): : 5633 - 5640
  • [47] Sparse Representation Based Band Selection for Hyperspectral Imagery Target Detection
    Tang Y.-D.
    Huang S.-C.
    Xue A.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (10): : 2368 - 2374
  • [48] Target detection in hyperspectral imagery based on independent component analysis with references
    Jin Shuo
    Wang Bin
    Xia Wei
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2015, 34 (02) : 177 - 183
  • [49] Target detection in hyperspectral imagery based on independent component analysis with references
    Key Laboratory for Information Science of Electromagnetic Waves , Fudan University, Shanghai
    200433, China
    不详
    200433, China
    不详
    100011, China
    Hongwai Yu Haomibo Xuebao, 2 (177-183):
  • [50] A Framework of Target Detection in Hyperspectral Imagery Based on Blind Source Extraction
    Wang, Gang
    Zhang, Ying
    He, Binbin
    Chong, Kil To
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 835 - 844