THERMIONIC ESCAPE STUDY IN p-i-n InP/InAs53P47 MULTI-QUANTUM WELL SOLAR CELL

被引:0
|
作者
Alemu, A. [1 ]
Freundlich, A. [1 ]
机构
[1] Univ Houston, Photovolta & Nanostruct Labs, Ctr Adv Mat, Houston, TX 77204 USA
关键词
CARRIER ESCAPE; HETEROSTRUCTURES;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Charge carriers thermal activation energies are obtained from the Arrhenius plot of photoluminescence vs. temperature intensity measurements made on InP/InAs53P47 multiquantum well solar cells. A theoretical investigation consisting of band structure calculation was undertaken in order to determine the height of the effective potential barriers seen by photo-carriers created in the InAs53P47 quantum wells. A very good agreement is found between experimentally obtained activation energies and theoretically determined effective potential barriers. These results infer that light holes thermionic escape drives the PL intensity decrease at lower temperatures. For an intermediate temperature range, a PL activation energy corresponding to the difference in effective confining potential barrier between heavy holes and light holes is obtained. At higher temperatures, the PL extinction process is dominated by direct heavy-hole escape. These results offer some insights for better designs of photovoltaic quantum confined devices.
引用
收藏
页码:1211 / +
页数:2
相关论文
共 50 条
  • [41] Monolithic p-i-n GaAlAs multiple quantum well photorefractive device
    Tayebati, P
    Hantzis, C
    Sacks, RN
    APPLIED PHYSICS LETTERS, 1997, 70 (06) : 691 - 693
  • [42] Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells
    Sellers, D. G.
    Chen, E. Y.
    Polly, S. J.
    Hubbard, S. M.
    Doty, M. F.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (19)
  • [43] Numerical modeling of p-i-n GaAs solar cell performance
    Chahid, E.
    Nachaoui, M.
    Mir, Y.
    Amine, A.
    Kinani, M. A.
    Elrharib, A.
    Abdia, R.
    Koumina, A.
    Malaoui, A.
    Zazoui, M.
    JOURNAL OF OVONIC RESEARCH, 2022, 18 (06): : 769 - 779
  • [44] Research progress in p-i-n microcrystalline silicon solar cell
    Li, Xin-Li
    Lu, Jing-Xiao
    Li, Rui
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (05): : 746 - 750
  • [45] Fabrication and characterization of InGaN p-i-n homojunction solar cell
    Cai, Xiao-mei
    Zeng, Sheng-wei
    Zhang, Bao-ping
    APPLIED PHYSICS LETTERS, 2009, 95 (17)
  • [46] Temperature dependence of p-i-n hit solar cell characteristics
    Furlan, J
    Popovic, P
    Smole, F
    Topic, M
    CONFERENCE RECORD OF THE TWENTY FIFTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1996, 1996, : 1105 - 1108
  • [47] A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods
    Reddeppa, Maddaka
    Park, Byung-Guon
    Nguyen Duc Chinh
    Kim, Dojin
    Oh, Jae-Eung
    Kim, Tae Geun
    Kim, Moon-Deock
    DALTON TRANSACTIONS, 2019, 48 (04) : 1367 - 1375
  • [48] Improved performance due to fast electronic escape in MQW p-i-n solar cells
    Alemu, A
    Bhusal, L
    Freundlich, A
    CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2005, 2005, : 129 - 132
  • [49] Mechanism of IR Photoresponse in Nanopatterned InAs/GaAs Quantum Dot p-i-n Photodiodes
    de Souza, Christina F.
    Alizadeh, Azar
    Nair, Selvakumar
    Saveliev, Igor
    Blumin, Marina
    Ruda, Harry E.
    Hays, David C.
    Watkins, Vicki H.
    Conway, Ken R.
    Braunstein, Edit
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (05) : 832 - 836
  • [50] Optically induced hysteresis of bilateral p-i-n junctions incorporated with InAs quantum dots
    Xu, Xiulai
    Williams, David A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2006, 21 (12) : 1533 - 1536