Computational complexity of randomized algorithms for solving parameter-dependent linear matrix inequalities

被引:32
|
作者
Oishi, Y [1 ]
Kimura, H
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Complex Sci & Engn, Bunkyo Ku, Tokyo 1130033, Japan
关键词
randomized algorithms; parameter-dependent linear matrix inequalities; computational complexity; conservatism; curse of dimensionality; linear parameter-varying systems;
D O I
10.1016/j.automatica.2003.07.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Randomized algorithms are proposed for solving parameter-dependent linear matrix inequalities and their computational complexity is analyzed. The first proposed algorithm is an adaptation of the algorithms of Polyak and Tempo [(Syst. Control Lett. 43(5) (2001) 343)] and Calafiore and Polyak [(IEEE Trans. Autom. Control 46 (11) (2001) 1755)] for the present problem. It is possible however to show that the expected number of iterations necessary to have a deterministic solution is infinite. In order to make this number finite, the improved algorithm is proposed. The number of iterations necessary to have a probabilistic solution is also considered and is shown to be independent of the parameter dimension. A numerical example is provided. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2149 / 2156
页数:8
相关论文
共 50 条
  • [31] Parameter-dependent matrix eigenvalue problems and their applications in structural dynamics
    Wagner, N.
    Gaul, L.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 2183 - 2188
  • [32] Parameter-dependent linear ordinary differential equations and topology of domains
    Boyko, Vyacheslav M.
    Kunzinger, Michael
    Popovych, Roman O.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 : 546 - 575
  • [33] On parameter-dependent Lyapunov functions for robust stability of linear systems
    Henrion, D
    Arzelier, D
    Peaucelle, D
    Lasserre, JB
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 887 - 892
  • [34] Constructing linear families from parameter-dependent nonlinear dynamics
    Kwatny, HG
    Chang, BC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (08) : 1143 - 1147
  • [35] Generating parameter-dependent linear families from nonlinear dynamics
    Kwatny, HG
    Chang, BC
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 2662 - 2666
  • [36] Randomized low-rank approximation of parameter-dependent matrices
    Kressner, Daniel
    Lam, Hei Yin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (06)
  • [37] Quality of the solution sets of parameter-dependent interval linear systems
    Popova, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2002, 82 (10): : 723 - 727
  • [38] Representation of a class of nonlinear systems with parameter-dependent linear approximations
    Ariffin, A
    Munro, N
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 537 - 542
  • [39] Model order reduction of random parameter-dependent linear systems
    Nechak, Lyes
    Raynaud, Henri-Francois
    Kulcsar, Caroline
    AUTOMATICA, 2015, 55 : 95 - 107
  • [40] Necessary and sufficient conditions for the stability of linear parameter-dependent systems
    El-Gebeily, MA
    Moustafa, KAF
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (07) : 931 - 936