Enhanced hydrodynamic transport in near magic angle twisted bilayer graphene

被引:10
|
作者
Zarenia, Mohammad [1 ]
Yudishtira, Indra [2 ]
Adam, Shaffique [2 ,3 ,4 ]
Vignale, Giovanni [1 ,2 ,3 ]
机构
[1] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[2] Yale NUS Coll, 16 Coll Ave West, Singapore 138527, Singapore
[3] Natl Univ Singapore, Ctr Adv 2D Mat, 6 Sci Dr 2, Singapore 117546, Singapore
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore
关键词
D O I
10.1103/PhysRevB.101.045421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the semiclassical quantum Boltzmann theory and employing the Dirac model with twist angle-dependent Fermi velocity, we obtain results for the electrical resistivity, the electronic thermal resistivity, the Seebeck coefficient, and the Wiedemann-Franz ratio in near magic angle twisted bilayer graphene, as functions of doping density (around the charge-neutrality point) and modified Fermi velocity (v) over tilde. The (v) over tilde dependence of the relevant scattering mechanisms, i.e., electron-hole Coulomb, long-range impurities, and acoustic gauge phonons, is considered in detail. We find a range of twist angles and temperatures, where the combined effect of momentum-nonconserving collisions (long-range impurities and phonons) is minimal, opening a window for the observation of strong hydrodynamic transport. Several experimental signatures are identified, such as a sharp dependence of the electric resistivity on doping density and a large enhancement of the Wiedemann-Franz ratio and the Seebeck coefficient.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] EFFECTS OF DISORDER ON THE DENSITY OF STATES IN MAGIC ANGLE TWISTED BILAYER GRAPHENE
    Rodrigues, A. Wania
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2020, 13 (04) : 915 - 922
  • [42] Electric Field-Tunable Superconductivity with Competing Orders in Twisted Bilayer Graphene near the Magic Angle
    Dutta, Ranit
    Ghosh, Ayan
    Mandal, Shinjan
    Watanabe, Kenji
    Taniguchi, Takashi
    Krishnamurthy, H. R.
    Banerjee, Sumilan
    Jain, Manish
    Das, Anindya
    ACS NANO, 2025, 19 (05) : 5353 - 5362
  • [43] Electronic correlations in twisted bilayer graphene near the magic angle (vol 15, pg 1174, 2019)
    Choi, Youngjoon
    Kemmer, Jeannette
    Peng, Yang
    Thomson, Alex
    Arora, Harpreet
    Polski, Robert
    Zhang, Yiran
    Ren, Hechen
    Alicea, Jason
    Refael, Gil
    von Oppen, Felix
    Watanabe, Kenji
    Taniguchi, Takashi
    Nadj-Perge, Stevan
    NATURE PHYSICS, 2019, 15 (11) : 1205 - 1205
  • [44] Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
    Nuckolls, Kevin P.
    Oh, Myungchul
    Wong, Dillon
    Lian, Biao
    Watanabe, Kenji
    Taniguchi, Takashi
    Bernevig, B. Andrei
    Yazdani, Ali
    NATURE, 2020, 588 (7839) : 610 - +
  • [45] The Origin of Magic Angle in Twisted Bilayer Graphene is Heisenberg's Uncertainty Principle
    Gao, Yuechen
    Zhu, Xi
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (37): : 9124 - 9131
  • [46] From magic angle twisted bilayer graphene to moire superlattice quantum simulator
    Ji Yi-Ru
    Chu Yan-Bang
    Xian Le-De
    Yang Wei
    Zhang Guang-Yu
    ACTA PHYSICA SINICA, 2021, 70 (11)
  • [47] Flat band carrier confinement in magic-angle twisted bilayer graphene
    Nikhil Tilak
    Xinyuan Lai
    Shuang Wu
    Zhenyuan Zhang
    Mingyu Xu
    Raquel de Almeida Ribeiro
    Paul C. Canfield
    Eva Y. Andrei
    Nature Communications, 12
  • [48] Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
    Kevin P. Nuckolls
    Myungchul Oh
    Dillon Wong
    Biao Lian
    Kenji Watanabe
    Takashi Taniguchi
    B. Andrei Bernevig
    Ali Yazdani
    Nature, 2020, 588 : 610 - 615
  • [49] Charge Distribution and Spin Textures in Magic-angle Twisted Bilayer Graphene
    Sboychakov, A. O.
    Rozhkov, A. V.
    Rakhmanov, A. L.
    JETP LETTERS, 2022, 116 (10) : 729 - 736
  • [50] Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem
    Song, Zhi-Da
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2022, 129 (04)