Supervised and semi-supervised machine learning ranking

被引:0
|
作者
Vittaut, Jean-Noel [1 ]
Gallinari, Patrick [1 ]
机构
[1] Lab Informat Paris 6, 104, Ave President Kennedy, F-75016 Paris, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Semi-supervised Machine Learning based ranking model which can automatically learn its parameters using a training set of a few labeled and unlabeled examples composed of queries and relevance judgments on a subset of the document elements. Our model improves the performance of a baseline Information Retrieval system by optimizing a ranking loss criterion and combining scores computed from doxels and from their local structural context. We analyze the performance of our supervised and semi-supervised algorithms on CO-Focussed and CO-Thourough tasks using a baseline model which is an adaptation of Okapi to Structured Information Retrieval.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [11] Fisher-regularized supervised and semi-supervised extreme learning machine
    Jun Ma
    Yakun Wen
    Liming Yang
    Knowledge and Information Systems, 2020, 62 : 3995 - 4027
  • [12] Robust semi-supervised extreme learning machine
    Pei, Huimin
    Wang, Kuaini
    Lin, Qiang
    Zhong, Ping
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 203 - 220
  • [13] Hessian semi-supervised extreme learning machine
    Krishnasamy, Ganesh
    Paramesran, Raveendran
    NEUROCOMPUTING, 2016, 207 : 560 - 567
  • [14] Semi-supervised ranking for document retrieval
    Duh, Kevin
    Kirchhoff, Katrin
    COMPUTER SPEECH AND LANGUAGE, 2011, 25 (02): : 261 - 281
  • [15] Semi-supervised Learning
    Adams, Niall
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 : 530 - 530
  • [16] On semi-supervised learning
    A. Cholaquidis
    R. Fraiman
    M. Sued
    TEST, 2020, 29 : 914 - 937
  • [17] On semi-supervised learning
    Cholaquidis, A.
    Fraiman, R.
    Sued, M.
    TEST, 2020, 29 (04) : 914 - 937
  • [18] Regularized Boost for Semi-supervised Ranking
    Miao, Zhigao
    Wang, Juan
    Zhou, Aimin
    Tang, Ke
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 643 - 651
  • [19] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [20] Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer
    Al-Azzam, Nosayba
    Shatnawi, Ibrahem
    ANNALS OF MEDICINE AND SURGERY, 2021, 62 : 53 - 64