Nonreciprocal Single-Photon Band Structure

被引:64
|
作者
Tang, Jiang-Shan [1 ,2 ,3 ]
Nie, Wei [4 ,5 ,6 ]
Tang, Lei [1 ,2 ]
Chen, Mingyuan [1 ,2 ]
Su, Xin [1 ,2 ,7 ]
Lu, Yanqing [1 ,2 ,3 ]
Nori, Franco [4 ,8 ]
Xia, Keyu [1 ,2 ,3 ,9 ,10 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210023, Peoples R China
[4] RIKEN Cluster Pioneering Res, RIKEN Quantum Comp Ctr, Saitama 3510198, Japan
[5] Tianjin Univ, Ctr Joint Quantum Studies, Tianjin 300350, Peoples R China
[6] Tianjin Univ, Dept Phys, Sch Sci, Tianjin 300350, Peoples R China
[7] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[8] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[9] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210023, Peoples R China
[10] Nanjing Univ, Minist Educ, Key Lab Intelligent Opt Sensing & Manipulat, Nanjing 210023, Peoples R China
基金
日本科学技术振兴机构; 中国国家自然科学基金; 日本学术振兴会; 国家重点研发计划;
关键词
RESONATORS; DELAY;
D O I
10.1103/PhysRevLett.128.203602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a single-photon band structure in a one-dimensional coupled-resonator optical waveguide that chirally couples to an array of two-level quantum emitters (QEs). The chiral interaction between the resonator mode and the QE can break the time-reversal symmetry without the magneto-optical effect and an external or synthetic magnetic field. As a result, nonreciprocal single-photon edge states, band gaps, and flat bands appear. By using such a chiral QE coupled-resonator optical waveguide system, including a finite number of unit cells and working in the nonreciprocal band gap, we achieve frequency-multiplexed singlephoton circulators with high fidelity and low insertion loss. The chiral QE-light interaction can also protect one-way propagation of single photons against backscattering. Our work opens a new door for studying unconventional photonic band structures without electronic counterparts in condensed matter and exploring its applications in the quantum regime.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] NbN superconducting single-photon detector with bilayer structure
    Shibata, H.
    Kaina, N.
    Seki, T.
    Tokura, Y.
    Imoto, N.
    SUPERCONDUCTIVITY CENTENNIAL CONFERENCE 2011, 2012, 36 : 324 - 329
  • [22] Single-Photon Nanoantennas
    Koenderink, A. Femius
    ACS PHOTONICS, 2017, 4 (04): : 710 - 722
  • [23] NONLOCALITY OF A SINGLE-PHOTON
    GREENBERGER, DM
    HORNE, MA
    ZEILINGER, A
    PHYSICAL REVIEW LETTERS, 1995, 75 (10) : 2064 - 2064
  • [24] Single-photon source
    Lerner, Eric J.
    Industrial Physicist, 2002, 8 (02):
  • [25] SINGLE-PHOTON IMAGING
    GARCIA, EV
    ACADEMIC RADIOLOGY, 1995, 2 : S120 - S121
  • [26] Single-photon sources
    Lounis, B
    Orrit, M
    REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (05) : 1129 - 1179
  • [27] Single-photon sources
    Oxborrow, M
    Sinclair, AG
    CONTEMPORARY PHYSICS, 2005, 46 (03) : 173 - 206
  • [28] Single-Photon Optomechanics
    Nunnenkamp, A.
    Borkje, K.
    Girvin, S. M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [29] Single-photon subtraction
    Noriaki Horiuchi
    Nature Photonics, 2017, 11 : 532 - 532
  • [30] Single-photon technologies
    Migdall, Alan L.
    Degiovanni, Ivo Pietro
    Cheung, Jessica Y.
    Polyakov, Sergey V.
    Fan, Jingyun
    JOURNAL OF MODERN OPTICS, 2011, 58 (3-4) : 169 - 173